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The articles in the present collection deal with

the generation of noise by bodies moving in a flow
of gas (homogeneous and inhomogeneous) and on
discharge of gas jets (axial compressor, propeller,

bar source, supersonic nozzle).

In addition, the collection contains articles

dealing with the propagation of sound in a flow chan-
nel with flexible wails, as well as with sound gener-

ation by fuel jets colliding with the oxidizing agent.

This collection is intended for researchers in

acoustics, as well as for engineers who encounter
problems of machine noise in their work.

Chief Editor: Doctor of

Physical and Mathematical Sciences,

Professor A. V. Rimskiy-Korsakov
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FOREWORD

The present collection is concerned with acoustic-aerodynamic and acous-

tic-gasdynamic phenomena accompanying the basic processes in several en-
gineering devices. Noise of air-blower units, reaction jets, and pulsed com-
bustion, although taking up only a small part of the power of aircraft engines,

combustion chambers, etc., do nevertheless, due to the high power of these
machines, have a harmful effect on their operation and on hearing.

While in the past the problems of jet stability and of interaction of flames

and thermal fluxes with sonic waves were of so-called "purely scientific" im-
portance (such as, for example, studies of the vibrations of Rayleigh's jets,

of the stability of flow boundaries and vibrations in the Rieke tube), today they
have also acquired practical significance. Of course, we are talking primarily

about phenomena which occur in high-speed gas flows (supersonic jets) or
high-flow rate phenomena (turbocompressors), rather than about topics treated
in the above classical works.

This collection contains experimental and theoretical papers of the staffs

of the Institute of Acoustics of the USSR Academy of Sciences, and of the De-
partment of Acoustics and Ultrasonic Engineering of the Moscow Mining In-

stitute. These papers can be divided into the following groups: those devoted
to the stability and vibrations of supersonic jets and to the sound generation by
these jets (articles by Yu. Ya. Borisov, N.M. Gynkina; V. M. Mamin; L.I.

Nazarova, T. Kh. Sedel'nikov), those devoted to the generation of sound by

multibladed compressor impellers (the article by D.V. Bazhenov and L. A.
Bazhenova), those dealing with the problem of sound generation by plates and

waveguide-type propagation of sound in channels, in particular, in the presence
of air flow (articles by D.V. Bazhenov, L.A. Bazhenova, Yu.B. Kravehenko;

P.G. Kolev; A.D. Lapin; Yu. P. Lysanov), and those devoted to the problem of
vibrations attendant to combustion (the article by V.I. Kondrat'yev).

These articles can, in our opinion, be of interest to researchers in
acoustics, as well as to engineers who encounter problems of machine noise
in their work.

A.V. Rimskiy-Korsakov
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A STUDY OF DISCRETE COMPONENTS OF THE NOISE SPECTRUM OF AN

AXIAL COMPRESSOR

D.V. Bazhenov, L.A. Bazhenova and A.V. Rimskiy-Korsakov

ABSTRACT. The article deals with the mechanism of forma-

tion of the discrete components of the noise spectrum at the

intake of an axial compressor. It shows that the intensity of
this noise is highly dependent on the blade ratio of the stationary

and rotating blading. It shows that this noise can be reduced
by changing the distance between the two types of blading as well
as the blade angle.

Aerodynamic noise produced by fans and axial compressors is made up of

individual components formed via different mechanisms. The basic noise is
that produced by vortices formed when the air sucked in by the compressor
flows around intake duct parts, noise due to the motion of impeller blades

which produce periodic disturbances of the medium in the plane of the
impeller (the so-called sound of rotation), and finally, the noise due to

discontinuities in the flow past the blades. The sound of rotation is produced

in a completely uniform flow, impinging on the plane of the impeller. It is due
to blade reaction to this flow, whereby this reaction is constant in the coordi-

nate system rotating together with the blades. Noise due to flow discontinuity
is produced by additional reaction forces on the blades; these forces are gen-

erated because the local velocities of the impinging flow are discontinuous over
the plane of the impeller. These velocity differences may be brought about by

flow turbulence (due to streamlining of the the air intake duct obstructions), as
well as by rigidly specifiable distortion of the velocity field produced by the

flow pattern past the guide vanes and the prerotation vanes of the stator.

Noise due to vortex formation usually has a wide frequency spectrum,
while the sound of rotation and the noise due to flow discontinuity (sometimes

called the "siren effect") have a clearly pronounced discrete character. The

intensity of discrete components of compressor noise produced by regular flow
discontinuity can be quite high, and development of methods for preventing this

kind of sound generation is of great practical interest.

The formation of discrete components due to flow discontinuity was con-
sidered by Ye. Ya. Yudin in his study of noise generated in ventilation units
F 1]. The literature on these problems is sufficiently extensive. We note here

work byA. F. Deming [2], H. H. Hubbard [3], as well as later work by E.I.
Richards, I. J. Sharland [4] and J. Nemec [5]. Finally, just as the present

/5*
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study was drawing to a close, there appeared a thorough study by I. Sharland [6],
many of whose conclusions are similar to those obtained by us.

Theoretical Discussion

Let us examine the passage of rotor blades past a single flow discontinuity
(inhomogeneity) formed by one guide vane. A pressure puls_ is produced (and
propagated) each time the rotor blade passes this inhomogeneity. The repeti-

tion frequency of these pulses is Nz 1, where N is the rotol rps and z 1 is

the number of rotor blades. The periodic pressure fluctuations which are ex-
perienced at any arbitrary observation point can be represented in the form of
a Fourier series:

P ----_ Cmexp (--jean4), (1)

where o_ = 2 Nz and CTmare factors of the expansion (m = 1, 2, 3,... ).

Factor C v are functions of the frequency, the pattern of the flow inhomogeneitym
and of the blades. They can also depend on the angular coordinates of the line
to the observation point relative to the axis of rotation of the rotor (the pulse
propagation from a blade intersecting a flow in_homogeneity is bipolar). The
specific form of factors C v thus depends on the geometry of flow and impellersm

in the given compressor. If the stator has z 0 vanes, which produce components

P similar to (1), then these components should be expressed in a way which

takes account of the difference in the time of arrival of the waves produced by
them to the observation point. These time differences are due, first, to the
fact that these inhomogeneities are situated at different distances from the
observation point (A), and second, to the fact that the time instants when the
rotor blades enter these inhomogeneities are shifted by the time during which
the rotor rotates through an angle (q) between the first and the yth inhomo-
geneity (Fig. 1). The overall sonic pressure produced by all discontinuities
can be written as

Ze _ 1

P0= _ C,,,exp{j[kmR,--to,_(t--x,)l}. (2)
vm 0

to m

where kmR v - c R v is the phase lag of the sound, corresponding to the dis-

tance R from the vth stator vane to the observation point; t is the time
V tP

needed for passage of the rotor blade from the vth to the first stator vane; and
c is the speed of sound. On the assumption that the observation point is far

away (the existence of a Fraunhofer region), the distance R v is expressed by

radius vector r0, Which is directed from the center of the rotor disk to the ob-

servation point (its polar coordinates are 0, _o) and the radius d of the circle
along which the inhomogeneities are located

/¢, = ro -- d cosOcos (_-- q_), (3)

/__7



Ro A

r,

Figure 1. Calculation of Acoustic Radiation
Created by Impeller Blades. ro - Radius Vector
Directed from the Center of the Rotor Disk to the

Observation Point; Ro - Distance from the Zero
Stator Vane to the Observation Point; Rz - Dis-
tance from the First Stator Vane to the Observa-

tion Point; (_ - Angle of Rotation of the Rotor Be-
tween the First and the yth Inhomogeneities.

where (pv= _-- v is the angle between the first and pth stator vanes. Using
=o

the Bessel function relationship
OD

exp (ix cos _p)= Jo (x) -{- 2 _ ]PJp (x) cos(/_p),
la-.l

we can transform Eq. (2) to

]:)-_ __j CmexP[j(kmro--'°)mt)] ( _-J exp(j2_m_'_)×Jo(--kmdcos(})-_ -
In_--_ vmO

Z. --1+ 2 N (4)
% l \ =o i]

v_O p_l

The first term in braces in the above expression corresponds to the expression
obtained by J. Nemec [5] for the discrete components neglecting the differences /8

in the phase lags kmd, i.e., on the assumption that

(0rod

--7- "_ 1. Jo (-- kmd cosO) _ t n Jp(--k,.dcosO) _ 0

when p J O. In this assumption
m =A- oo _--1

P= _ C_exp[j(kmro--Co,.t)] ._, exp(j2nm _v_ =0
Z0 ]

_rl == -- O0 V_I

for a nonintegral Zl/Z 0 since the sum

_exp(]2_m_o._)_si_._nnzlm -----0, if z,=]=kZ,,
,=1 sin nzlm _-- Zo, if Zt _ kZO.

go

Thus, if z I and z 0 are relatively prime numbers (as is the case in practice),

then according to [5] only discrete sound components propagate from the discon-
tinuities. The frequencies of these components are multiples of the product

ZlZ 0 (number of rotor blades by the number of stator vanes, which produce the



discontinuities). On the other hand, it has been established experimentally

that frequencies which are multiples of the number of rotor blades are always

propagated, despite the fact that due to strength considerations, z 1 and z 0 are
always made to be mutually prime°

The first term in braces of Eq. (4), which specifies the maximum sound

propagation in the direction of the compressor axis, is of importance only for

discrete components of quite high frequencies U_m = 2rrkZlZ0, which as a rule

lie outside the range of sonic frequencies.

Changing the order of summation in the second term in braces of Eq.
we can reduce it to

sin _ (zlm _ p)-- _ -- -- ]P'.lp (-- kind cos 0) exp (]]np) q-
= 1 sin_- ° (ztm--p)

sin ,_ (zlrn 4- P)
+ sin .__._(zlm+p)J_Y_(--km4c°sO) exp(-]l_)"

/vffi=l ZO

(4),

(5)

These two terms are nonzero when

sin a (zlm-- p) sinn (zlm Jr P)
:_ =]=0, _t =]=0. (6)

sin _ (zlm -- p) sin_- ° (zxm -]- p)

Since z 1, z 0 and p are positive integers and m are any integers, then, in order

to satisfy inequalities (6) it is required that

zlm -- p -- -4-qzo (zlm -4- P) = -4-qzo, (7)

where q can be any integers. If we assume, for simplicity, that z 0

number, then the fractions in the left-hand sides of Eq. (6) will, assuming

condition (7) holds, become z0, and then we will have for Eq. (5)

g

gO

1a = m qz, p _ -- (mzt -- q_)

× ] p(-- k,_d cos O) exp (-- ]p_).

is an odd

(8)

According to Eq. (7 t it is always possible to find q such that when m = 1, 2, 3,
.... the sums of Eq. (8) will contain at least some terms satisfying the condition
p > 0 and, consequently, the amplitudes of harmonics of the number of passes

by the rotor blades will be nonzero even if z 1 and z 0 are mutually prime.

The problem of the effect of the relationship between z
1

tensity of discrete components is of great interest. Since

and z 0 on the in-

/v (x) ,g 0,07 when p+2:>z,

/9
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then the main terms in summationsof Eq. (8)will be terms with the lowest p.
Examining Eq. (8) we seethat for valuesof zI andz0 usedin practice the main

contribution is made by the term with p= ]z I - z 0 ]. The p-order Bessel func-

tion reaches its first maximum at an argument whose value is close to p; the

larger p, the lower the value of this maximum. It is thus desirable that! Zl z0
2_rz I Nd

be as large as possible and that iz 1 -- z0! + 2 > c Since we virtually

always have Zl. -- z0] << z I then, simplifying, we get

2n_va 2_d --_ <_ 0.53 >-v- = _--;

where X 0 is the wavelength corresponding to the given rotor rps. Since in the

increases with the argument to the power (p + 2_,region of small arguments Jp

then a reduction in d/X 0 and increase in ([ z 1 -- z 0 !) have a very strong effect.

In practice, a reduction in d involves an increase in N for a given compressor
delivery; this means that the most sensible approach is to attempt to increase

the difference (]z 1 -- z0[).

The direction of maximum sound propagation is determined [rom k d cos
In

Omax= Xmax, where Xmax corresponds to the maximum of Jp (x). If kmd <

< Xma x, then the propagation maximum lies in the plane of the impeller. If

C m are functions of 0, producing bipolar pressure propagation, or radiation

of 0 + 1 order, then, according to a well tmown principle, the direetivity of

the entire group can be found from the product Cm(0 ) Jp (--kmd cos 0).

The above calculations of the direetivity and intensity of sound propagation

do not take into account the effect of the air intake duct, which could appreciably --
change the conditions of sound propagation, if the intake duct axis is not coaxial
with the direction of 0 . Thus it is recummended that the air intake duct

max

have a shape in which the 0ma x direction is screened by sound-absorbing duct

walls.

Experimental

The measurements were made on a turbocompressor which was discon-

nected from the turbine and coupled to an electric motor (Fig. 2a). Since it
was established by measurements with the fully-assembled turbocompressor

unit that turbocompressor stages far removed from the intake part do not

appreciably contribute to the energy of the noise emanating from it, only the
first compressor stage with guide and prerotation vanes was tested. This made
it possible to remove the blades from all the rotor stages with the exception of

the first and thus to reduce the power needed for driving the compressor. The

/10
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Figure 2. Schematic of Experimental Setup.
a) Overall view of setup (side and top views);
1) microphone; 2) compressor; 3) electric
motor; 4) foundation; b) and c) block dia-

grams of the setup:

axis of the rotor, which was installed in the open air, was 1 m from the ground
One end of a horizontal bar, which was free to rotate parallel to the plane of

the ground and was driven by means of an electric motor, was fastened to a pole
above the compressor. The measuring microphone was fastened to the other end
of the 5 m long bar. By smoothly moving the bar the microphone could be moved
over a full circle about the compressor. In the majority of cases, the noise
radiation directivity diagrams were taken in the half-space in front of the com-
pressor intake. The standard inlet guide vane apparatus was replaced by an
experimental unit with simplified elliptical vane cross sections. This apparatus
made it possible to study the effect (on the noise} of the number of vanes, their
mutual arrangement, angle of inclination of the guide vanes relative to the rotor
blades and the distance between the rotor blades and the guide vanes. The com-

pressor rpm was varied in steps by means of interchangeable sheaves. The
block diagrams of the setup are shown in Figs. 2b and c. The signal from the
microphone was fed to a wide-band amplifier. In the studies of the behavior of
some discrete component of the noise frequency spectrum, the amplified signal



was also fed to a filter with a 4 cpspassband,which was tunedto the frequency
of this component. From the filter, the signal wentto anautomaticlevel re-
corder with a recording rangeof 50db. With the recording tapemoving con-
tinuously, the microphonewasmovedalong the circle havingthe compressor
as its center, so that a diagram of the directivity of thediscrete componentof
the noisewas recorded. At the sametime the signal from the outputof the
filter was fed to an integrator, The detectorof the integrator was linear, so /11
that its output current was proportional to the amplitude of the sonic pressure.
The time needed by the microphone to travel over the semicircle is much
smaller than the time constant RC of the integrator circuit, so that the inte-
grator.output voltage at the end of the measurement is proportional to the average
amplitude of the sound pressure over the entire semicircle about the compressor.
To achieve this, the microphone rotation rate was the same during all measure- /12
ments. The average pressure describes the sound radiation emanating from
the compressor much better than measurements taken at one specific point.

During the runs, we monitored the compressor output by means of an
anemometer, which measured the flow velocity in three points at the outlet;
these three measurements were then averaged. In addition, the power con-
sumption per volume of air delivered, as well as the rpm were recordered. All
the accoustical measurements were relative, although calibration data could
have been used to calculate the absolute sound pressure. The principal mea-
suring error is due to differences in compressor operation, and possibly also
to variations in atmospheric conditions. Narrow band measurements made in
succession were reproducible to within 5%. Measurements made during dif-
ferent days and during different times of the day gave a greater scatter, so
that the error of an individual measurement in the 4 cps band was as high as
1 db. The measurement error in a wider band was always less and never ex-
ceeded 5%.

Contribution to Noise by the Guide Vane Array

It can be seen from comparing Figs. 3a and 3b that when the guide vanes
are removed (Fig. 3a), the discrete components of the noise disappear practi-
cally completely. With a guide vane array made up of 16 vanes (Fig. 3b), the
intensity of the discrete components is approximately 26 db higher, and the over-
all noise level is by about 4 db higher than without the guide vanes. The entire
noise increase in the wide band was produced by the discrete components. As
can be seen from the directivity diagram for wide band noise (Fig. 4a) and for
the discrete component (Fig. 4b) whose frequency is that of the first harmonic

of the rotor ¢0 = 2_Nz 1, all the maxima of these diagrams fully coincide. The

mutual correlation coefficient of diagrams of Figs. 4a and 4b is 0.87, which in-
dicates an appreciable effect of the discrete component on the overall noise
level.

Effect of the Vane Angle

The angle between the guide vanes and the radius of the disk of this appara-
tus was varied by using different vanes. It was possible to place three vanes in
five specific positions (0, 12.5, 25, 37.5 and 50°) relative to the leading edge
of the rotor blade. Since the number of blades was low, the sound field
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Figure 5. Discrete Component Inten-
sity as a Function of the Guide-Vane

Angle.
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Figure 6. Discrete Component In-
tensity as a Function of Distance
Between the Rotor and _ator at
Various Numbers of Stator Vanes.



obviously could not have circular symmetry and the measurements were made

by averaging at four positions of the guide vane apparatus, obtained by rotating
it by 0, 90, 180 and 270 ° about the compressor's axis. The sound pressure
was measured in a narrow band at the frequency of the first harmonic of the
rotor. As can be seen from the graph (Fig. 5), maximum radiation is observed

at an angle of 12.5 ° , which differs somewhat from results obtained by Sharland

[2]. This may be attributed to the fact that the rotor blades in our compressor
were twisted, as a result of which their velocity field was displaced relative to
the radius. In addition, according to our data, displacing the vane angle by

12.5 o from the maximum radiation angle reduces this noise by 4 db, while ac-

cording to Sharland this angle should be 20 ° . This is possibly due to the fact
that Sharland has measured only one point in the field, for which this effect

may be different from that averaged over a semicircle.

Effect of the Distance Between the Stator Disk and the Guide Vane Apparatus

/JA

/15

The experimental guide vane apparatus used permitted to set up distances
1 between the rotor and stator of 10, 13, 16 and 20 mm and to vary the number

of vanes (to insert 8, 16, 24 and 48 vanes). The results are presented in

graphs (Fig. 6). It can be seen from these graphs that in all the cases, putting
the disk from 10 to 20 mm away reduces the discrete wise component by 5-6 db.

Effect of the Number of Guide Vanes

It was shown in the theoretical part of this article that it is desirable to in-
crease the difference between the number of rotor blades and stator vanes in

order to reduce the discrete noise components. Here, however, no considera-

tion was given to the effect of the air intake duct and the direetivity of the radi-
ation. Therefore it is desirable to experimentally check the effect of the ratios
between the number of rotor blades and stators. The experimental guide vane devices

used could be equipped with 2, 4, 6, 8, 12, 16, 24 and 48 vanes with the impel-

ler blading held constant at 25 blades. It can be seen from Fig. 7 that the

.4,db

ftv
/2

5

\
f-_ \ d=tOrnm
i_\ _" d-f2mm

Oz'z2'sJoJ'4. e

Figure 7. Discrete Component Inten-

sity as a Function of the Number of
Stator Vanes n for Various Distances

d Between the Propellers.

dependence of noise on the number of

vanes is very appreciable. At 4000
rpm the maximum first-harmonic

radiation took place when the stator
had 16 vanes. As the distance be-
tween the rotor and stator is made

larger, the radiation decreases. By

e_

t$

f6
2q68 f2 f6 2V z/Sn

Figure 8. The Efficiency of a Stage
as a Function of the Number of

Stator Vanes.
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increasing this distanceandvarying the numberof guidevanes it becomes
possible to reducethe radiation of the discrete componentby more than20db,
i. e., to approachthe soundradiation which is observedin a compressorwith
the guidevaneapparatusremoved.

Measurementof aerodynamicparameters showsthat obtainingthe same
air flow rate with different numbersof guidevanesrequires different power in-
puts. Theefficiency of a compressoras a function of the numberof stator
vanesis shownin Fig. 8. It canbe seenthat the efficiency varies by as much
as 20%as a function of this number. Comparingthe graphsof Figs. 7 and 8 it
is possible to obtaina compromisesolutionbetweennoise andefficiency. How-
ever, in a real compressor the redesignof the guidevaneapparatusof only the
first stagewill changethe compressorefficiency very little, while thenoise
will be reducedappreciably (since the stagesnot immediately adjoiningthe
compressor inlet makenoappreciablecontribution to the discrete components).
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EFFECTOF THE DESIGNOF WALLSOF THE AIR INTAKE DUCT OF AN
AXIAL COMPRESSORON THE PROPAGATIONOF SOUND

D.V. Bazhenov,L.A. Bazhenova,Yu. V. Kravchenkoand
A.V. Rimskiy-Korsakov

ABSTRACT: The present article examinesa methodfor simu-
lating, under laboratory conditions, soundsourceswhich
haveparameters close to thoseexisting in axial turbocom-
pressors with guidevanes. Thereuponthe propagationof
suchsoundover a coaxial waveguidewith parameters close
to thoseof a turbocompressor air intake duct is considered.
The effect of resonators andactive absorptive linings on the
attenuationof soundpropagatingin the waveguideis also
examined.

Abatementof noisefrom multi-stage axial uJmpressors is of great
practical importance. This canbedonein two ways: 1) preventionof noise
at the source;2) preventionof its propagation. The first problem wasdis-
cussedin [ 1], while the secondis examinedin the present paper.

Oneof the methodsof preventingnoise from propagatingfrom its source
is its attenuationin theair ducts. This problem wasexaminedextensivelyby
a numberof SovietandWesternauthors. The pioneeringwork in this field was
doneby A.I. Belov [2, 3] whohas formulated the problem of acousticdesignof
ventilation units andproposedbasic methodsfor solving it. Amongearlier ef-
forts we shouldalso notework by Yu. I. ShneyderE4] andS.P. Alekseyev E5]
whohaveexperimentedwith special casesof noise attenuationin ducts. Among
later efforts we shouldnotethe work by Ye.Ya. Yudin [6, 7], which is both
theoretical andexperimental, as well as experimental work by R.D. Filippova
E8, 9], whichwasperformed under laboratory, aswell asunder actual opera-
ting conditions.

The basic types of soundattenuatingair ductsare active (lined with
porous, sound-absorbingmaterial), andreactive. The simplest active sound
attenuatoris a ductwith its inside surface lined with a soundabsorbingmaterial.

The attentuationof noise by the sound-absorbing lining of the duct can
becalculatedfrom A.I. Belov's formula

6----1.t _l[db],
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where 1 is the length of the lined part of the duct, in m; _ is the material's ab-

sorption coefficient; n is the perimeter of the duct's cross section, in m; if (_)
is an experimentally tabulated function; and S is the cross sectional area of the

2
duct, in m . This formula was derived by Belov on the assumption that the ac-

oustic energy is distributed over the air duct cross section just in the case of
diffuse sound, i.e., with a uniform density. The wave pattern of sound propa-

gation was not taken into account in deriving this expression. It was shown ex-
perimentally that the formula is in satisfactory agreement with experimental
results for duct cross sections which are smaller than the wavelength of the

sound and for sound-absorbing linings with low sound-absorption coefficients.

G.D. Malyuzhinets [ 10] has derived a more rigorous formula for cal-
culating the attentuation of low-frequency sound waves in straight, lined ducts,

with the wave nature of sound propagation taken into account

AL= - 8.6
c bV, _

where AL is the attenuation of sound per unit length; f is the frequency of the

sound; and c is the speed of sound

[ . 1R ; b= 1-- 2_!a(B _+R s) jd = 2____Ia (R' + Y')
C C

where a is the distance between walls, while R and Y are the real and imaginary

parts of the normal impendance of the absorber.

This formula was checked experimentally by R.D. Filippova who has

shown that it is applicable on the condition that IG]ka<< 3, where G = pc/Z is

the reduced normal admittance of the system.

Investigating noise attenuation in aii ducts by means of sound-absorbing
liners over a wide frequency range under laboratory conditions (where the sound

was produced by a loudspeaker), Ye. Ya. Yudin E 17] has concluded that the at-
tenuation per unit length of the lining is constant for most frequencies and over

the major part of the sound-absorbing material. Yudin has suggested that en-
gineering calculations be made on the basis of a table which gives the average
attenuation per one unit line thickness when the duct is lined with absorbing ma-
terial such as felt or VT-4 fiber:

TABLE

Thickness of sound absorbing material, mm

Attentuation, db/unit thickness

15 40 100 250

0.6 1.4 2.0 3.0

The author [ Yudin] emphasizes that he has studied the noise from fans,

whose noise spectrum is made up primarily of low-frequency components.

Units with large-size air ducts frequently use several parallel dampers

of the lining type, i.e., a honeycomb silencer. To determine the attentuation

/19
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of such a silencer, composed of many identical cells, it is sufficient to calculate

this quantity for one cell.

In addition to honeycomb dampers, use is also made of baffle-type dampers
which consists of a number of sound-absorbing baffles placed in the duct parallel

to the direction of flow. The sound attenuation in a baffle-type damper can be
calculated from Belov's formula

l
6b.f---- 2.2_' _ [db],

where or' is the sound-absorption coefficient of the lining, and a is the distance
between baffles.

The use of honeycomb or baffle-type dampers makes it possible to in-
crease the damping per unit length of sound-absorbing lining by reducing the

distance between baffles, but this increases the hydraulic resistance of the
damper, and consequently the compressors experience a head loss. With

large air flow velocities in air shafts, these losses may be quite appreciable.
The hydraulic resistance H can be calculated from

p_
n=_-,

where _ is the hydraulic resistance factor, P is the air density, v is the air
velocity, and g is the acceleration of gravity.

The hydraulic resistance factor for a baffle-type damper has the form

__8) s 8 0.0i5

where 8 is the baffle thickness, and a is the distance between baffles (see [11]}.

To illustrate the above, Fig. 1 shows a curve obtained by simple engineering
calculations using Belov's formulas.

The hydraulic resistance of the baffle-typedamper (in mm H20), which

increases with the number of baffles (and, consequently, also with a reduction

of their spacing) is laid off on the abscissa. The attenuation per unit length of
damping lining for a lining absorptioncoefficient of I is laid off on the ordinate.
The baffle thickness is taken as 50 mm, the air flow velocity as v = 60 m/sec.

It can be seen from the graph that even at these low wind velocities, the head
losses with baffle-type dampers can be quite appreciable.

In addition to active dampers, aerodynamic noise is frequently silenced
by reactive dampers, which use the reflection of the sound to the source in

branch resonators. Dampers of this type are superior to others in that they
have low hydraulic resistance and do not require a porous, sound-absorbing
material, the volume and weight of which must be quite high if it is to dampen

low frequencies. The resonators can be either cavities whose dimensions are

appreciably smaller than the sonic wavelengths, i.e., Helmholtz resonators,
or branches the length of which is approximately 1/4 of the wavelength.
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Figure 1. The Attenuation per
Unit Length of Baffle-Type

Damper as a Function of Its
Hydrodynamic Resistance

If we disregard the active re-
sistance of radiation and the attenu-

ation by friction on the resonator
wails, then the impedance of the res-
onator entrance at resonance fre-

quency should be zero, so that the

space velocity at the resonator en-
trance should be very high. Hence

the amplitude of sonic vibrations
which propagate through the duct
should be attenuated. If the sonic

frequency is such that only the zero
normal wave of this frequency can
propagate in the waveguide, then a

single resonator would be able to

fully reflect the sound wave toward the source. The more rigorous two-dimen-
sional theory [12], which takes into account the fact that the sound needs some
finite time to reach the resonator when starting from any point of the duet cross

section not directly adjoining the entrance, shows that even for zero impendence

the damping is finite and is equal to approximately 14 db per unit graduation.

The pioneer in the field of theory and technology of resonance sound ab-
sorptions is by all counts S.N. Rzhevkin. His resonators make use of the fact

that, on resonance, the rate of vibration of air at the resonator entrance ex-
ceeds the vibratory velocity in the free space by many times. Hence, if a

layer of sound absorbing material is placed in the resonator entrance, i.e., at
the point where the rate of vibration air molecules is at maximum, then the

absorption properties of the system will be very much enhanced.

f0 is

The maximum absorption for a single resonator with resonance frequency

,(°),Am.x-----5_ To '

where

1o= _

Here c is the speed of sound, S is the cross-sectional area of the resonator

entrance, V is the resonator volume l k is the equivalent entrance length (for a

circular neck with radius r I k = 1 = 1.57r). Single resonators are capable of

appreciable sound absorption only in a narrow frequency band near resonance.
A much wider frequency range canbe obtained by single- or multi-layer res-

onant dampers, which were designed by Rzhevkin and V.S. Nesterov [ 13]. The

damper provides for satisfactory damping (ff > 0.5) in the frequency range of

400-4000 cps.

Of particular interest in damping of aerodynamic noise are simple reso-

nant dampers in the form of pipe branches closed at the other side, which can
be used for damping low-frequency noise with discrete components. An
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experimental studyof suchdamperswasperformed by Yudin together with

A.G. Munin [ 15] and Filippova [ 9] at frequencies at which the wavelength

was greater than or equal to the duct width. The sound source was a dynamic

microphone, to which a signal was supplied from a tape recorder or signal
generator. The studies showed that all the damping curves of the duct with

branches have a clearly expressed resonance character with odd harmonics;

here the maximum damping at the fundamental resonance frequency is
from 6 to 12 db per unit.

It should be noted that complete reflection of sound to the source with

branch resonators is possible only when the sound in the duct slides along
the resonator opening. No sound absorption takes place at normal incidence

in a resonator without damping. Thus, the reflection will be complete if the

sound frequency is such that only a zero normal wave ol this frequency can
propagate in the waveguide. On the other hand, if higher order modes can
also propagate in the waveguide, then the quarter-wave branch will not be an

ideal reflector, but should be treated as some sort of discontinuity in the
waveguide wall.

As was shown by A.D. Lapin, the presence of a discontinuity (in our case

of a branch resonator) results in redistribution of the sound wave energy in
the waveguide space beyond the resonator. This redistribution proceeds in a

direction such that the higher natural modes of the waveguides become more
intense. Thus a branch resonator serves as some kind of converter, which

transforms the excitation of low natural modes of the waveguide into high
modes. This phenomenon may be useful for sound attenuation, since the high
modes, which are multiply reflected from the waveguide walls on their propa-

gation, can be successfully absorbed by the sound-absorbing lining of the
duct.

The study of feasibility of maximum sound damping in short waveguides,
i. e., in guides whose length is commensurable with their diameter, acquires

high importance in reducing the noise of axial compressors. Presently avail-
able turbo compressors use an intake duct for sucking in the air. The overall
dimensions of these ducts are such that they should be regarded as short
waveguides. Roughly speaking, such an intake duct consists of two concentric

pipes between which the sound propagates. The diameter of the outer pipe

varies from 40 cm to 1 m, while the length is usually 50-60 cm. The annular
space between the inner and outer pipe is usually 15-25 cm. It is desirable

to use the sound propagation in this space to reduce the sound radiation by the
compressor.

Assuming that the pipes are lined with material with absorption coeffi-

cient _ = 0.8 and an applying Belev's formula, we will get that the expected
sound attenuation for an annular space of 15 cm will be about 10 db over the entire

air intake duct. However, if Yudin's formula is used, then the sound attenua-

tion (with the same data) is only 4 db. Hence it seemed expedient to make an
experimental study of the propagation and damping of sound in intake ducts

such as compressor air intakes, taking into account the specifics of sound

generation (guide vane apparatus and impeller), as well as the frequency re-
gion of the highest sound intensity in real compressors. For this purpose we
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designedanexperimental setup in which it was possible to simulate the mechan-
ism of sound excitation in a turbocompressor with guide vanes, and to study

propagation and damping in a coaxial space which simulates the intake duct of
a turbocompressor.

The Experimental Setup and Measuring Techniques

The propagation of sound in short air intake ducts with impedance walls
was studied in a setup which made it possible to approximately simulate the op-
eration of a compressor air intake duct.

The test space in such a duct was formed by an outer and inner pipe. If
necessary, the inner pipe could be easily removed. The pipe bodies were made

from wood slats held together by circular metal hoops. The inside surface of
the outer pipe was lined by 2 mm thick textolite sheet. The inner tube was also

lined with sheet textolite along its outer diameters. The spaces between slats
of the outer pipe were carefully stuffed with cotton; in addition, the entire pipe

was sheated from the outside by a 20 mm thick Prolon sheet. This prevented
sound from penetrating outside the test space. The inner pipe was rigidly con-

nected to the outer one by means of pins which were seated in the metal hoops.
Rows of 48 mm deep holes were drilled in the slats of the outer and inner pipes.
The hole diameters in the outer pipe were 15 mm, while in the inner they were

10 mm. These rows of holes form a system of branching resonators, whose ef-
fectiveness we wanted to determine. The branches were of adjustable height.

Some resonator rows could be closed partially or completely by means of 20 mm
thick Prolon sheets. Guides for the coordinate bar were placed between two

slats of the outer pipe. The measuring microphone was fastened to this bar,
which made it possible to move the microphone smoothly along the pipe axis.

The bar had markings for positioning the microphone. The microphone could
be placed in different points of the test space by means of interchangeable

adapters of different length. Sound was produced in the test space by means
of loudspeakers placed in a rigid foam plastic box with dimensions of 800 x 800
x 800 mm 3. The loudspeakers which were mounted on a reflecting board, ra-

diated virtually exclusively into the test space, since the box itself was sound-
absorbing. The air duct model was rigidly connected to the loudspeaker box

through a Prolon adapter-gasket. To perform the experiment it was necessary
to smoothly rotate the measuring microphone along a circle at the air intake
inlet. For this purpose a sleeve was pressed into the metal hoop of the inner

pipe. A balanced beam, on which the microphone was tightly fitted, was placed
on the axis of this sleeve. The system was connected to the shaft of an electric

motor by a flexible coupling.

The design of the inner pipe and the geometric dimensions of the air duct
model were close to those encountered in real compressors. The general view

of the air intake duct model is shown in Fig. 2 .

A major part of the work was simulating the sound-generation mechanism
of a stage of a compressor with a guide vane apparatus. A 24-channel elec-
tronic commutator was used as the model.
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Figure 2. Modelof Air Intake Duct.

In anoperating compressor a soundpulse is producedwheneverthe rotor
blade intersects a guidevanewake. Theproblem thus reducedto obtaining
soundpulsesformed on intersection of the wakeof a stationary vaneby a moving
blade. The structure of the model wasasfollows. A frame with 24 lamps lo-
catedalonga circle was fastenedon the endof thehousingof a DC motor. Each
lamp simulateda guidevane. Thena disk with 25slits was fastenedon the
motor shaft. The slits simulated the rotor bladesof a real compressor. It
shouldbenotedthat the numberof light sourcesandslits on the disk is close to
the numberof guidevanesandbladesof the first-stage rotor of anordinary
turbocompressor. Another frame with 24devicesfor converting the light sig-
nals into electrical signalswas situateddirectly in the backof the rotating disk.
Thesewere photodiodeswith a very high sensitivity andresponse. Whenthe
motor rotated the solid parts ("teeth"} of the rotating disk intermittently shields
or uncoversthe light sourcefor a givenphotodiode_thus producingvoltage
pulses. Thepulse frequencycould bevaried over a wide range by changingthe
motor rpm. Thepulsegeneratedin eachphotodiodewas fed to the grid of an
appropriatetube, which served as apower amplifier. The power amplifier
loadswere small electrodynamic loudspeakers. All the 24 loudspeakers,which
were locatedona circle andwere phasedby this electronic commutator, sup-
plied soundto thetest spaceof the air duct model. Theradiation intensity was
continuouslyadjustablefrom 0 to 150milliwatts. Eachcommutatorchannel
thus consistedof a light source, a photodiode,a power amplifier anda loud-
speaker. A schematicof one suchchannelis shownin Fig. 3. Sincethe loud-
speakersmay havedifferent acousticoutputs, eachchannelwas calibrated. For
this the measuringmicrophonewasplacedoppositeeachloudspeakerat a speci-
fied distancefrom it andthe acoustic outputwas equalizedby adjustingthe elec-
trical sensitivity of the channels. The loudspeakerswere mountedon a plywood
reflecting board 12mm thick alonga circle 460mm in diameter. Thereflec-
ting board served as the front wall of the infinite baffle enclosure.
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Figure 3. Schematic of One
Channel of the Electronic

Commutator.

The Experimental Procedures

1. Plotting the sound pressure distri-
bution along the axis of the air intake duct
model.

The block diagram for read-off of the

sound pressure distribution along the axis
of the model is shown in Fig. 4. The micro-
phone was placed by means of one of the
adapters on the coordinate bar, which is

used for moving it smoothly along the axis

of the test space when taking the readings.
The position of the microphone in this space

is determined from markings on the bar and

is recorded by a pen on the level-recording
tape. As a result, a curve of the sound
pressure distribution as a function of the

distance along the axis of the model is ob-

tained on the recording tape. To eliminate
the effect of waves reflected from walls of

the room, provisions were made for closing
the intake section of the air intake duct by a sound-absorbing pad and for reading
the pressure distribution pattern by the above method.

2. Obtaining averaged characteristics of the energy radiated by the duct's
inlet section.

The block diagram for obtaining the frequency characteristics of the en-

ergy radiated by the pipe inlet section, averaged over the cross section, is

shown in Fig. 5. The measuring circuit includes an integrator with a dynamic
range of 50 db whose integration time can be varied from 1 to 100 seconds.

As was pointed out above, the model was designed so as to make it pos-
sible for the measuring microphone to rotate at a constant speed in the plane of
the pipe's intake section. The level recorder's motor was used as a drive for

obtaining this motion. The signal from the microphone in the frequency band of
1000-5000 cps was averaged by the integrator per one full revolution of the mi-
crophone. The time needed for a revolution was 15 seconds. Since the time

constant of the charging circuit of the integrator is much greater than the inte-
gration time, the averaging accuracy was at least 3%.

The integrator start was synchronized with the start of the microphone

travel, and the reading was taken on a dial instrument after the end of the cycle.
Simultaneously with this, the level recorder was drawing diagrams of the sound
pressure distribution in the plane of the pipe inlet section. The measurements

were taken on the test space of the model in the following arrangements: a) space
fully closed off by sound-absorbing material; b) space 2/3 closed off by sound-
absorbing material; c) all the rows of branch resonators in the test space open;
d) some branch resonators in the test space open.
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Figure 4. Block Diagram of
Pressure MeasurementsAlong
the Model's Axis. 1) Micro-
phone;2) Amplifier; 3) Analyzer;

4) Level Recorder.

The sensitivity of the measuring
channel was calibrated in the process

of measurements by supplying a con-
stant-amplitude 1000 cps signal. The

error of the measuring channel used
was not more than 3 dbo

Experimental Results

Figure 5. Block Diagram for Av-

eraging the Readings over the Model's
Cross Section. 1) Microphone; 2) Am-

plifier; 3) Analyzer; 4) Integrator; 5)
Indicator; 6) Level Recorder.

The experiment was set up to

determine means for appreciably

reducing the sound while it was
passing through the model of a turbo-
compressor intake duct. As was
pointed out in the introduction, the

difference between the present ex-

periment and those performed by
other au+.hors consisted in the fact

that the excitation produced by the

sound source was not arbitrary, but
fully defined and close in its proper-
ties to that actually prevailing in

turbocompressors with vane guides.
The importance of this kind of exci-

tation is highly obvious, since the damping along a pipe with active impedance

walls will depend appreciably on the predominant modes excited by the sound
source.

The basis of the experiment was measurement of the average sound pres-

sure over the entire open inlet section of the air intake duct at different motor
rpm. Since changing the motor rpm also changes the frequency of radiation of

the rotor, first harmonic, which was the principal variable measured in the
experiment, the curve of the average sound pressure over the inlet section as

a function of the motor rpm can be easily represented as a frequency curve.

The experiments were performed by comparing the frequency curve ob-

tained at the inlet section of an air duct with rigid walls, with that obtained at
this section in an inlet duct whose walls were lined with an active sound-

absorbing material (20 mm Prolon sheet). The absorption coefficient of this
material for diffuse sound incidence in the frequency range under study was
0.8-0.9.

The experimental results are shown in Fig. 6 with the excitation frequency

on the abscissa and the logarithm of a quantity proportional to the sound pres-

sure averaged over the entire intake section of the duct on the ordinate. The
graph shows three curves. Curve 1 is for a duct with rigid walls, curve 3 is
for a duct fully lined with Prolon, while curve 2 is for a duct lined only over

two thirds of its length, i.e., for approximately 60 era. The remaining part
of the duct was not lined, and thus had rigid walls.

As can be seen from the graphs, when the sound-absorbing material was

placed over the entire length (1 m), the sound pressure was attenuated by an
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Figure 6. Effect of Sound Absorp-
tion by the Walls of the Model.

average of 25 db over the range.
On the other hand, when only a
part of the duct was lined, the atten-

uation was naturally less and equal
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Figure 7. The Sound Pressure as a Func-

tion of the Polar Angle at the Model Outlet.

to only 19 dbover the range in question.

Comparison of experimental data with those computed from Belov's or

Yudin's formulas shows a high degree of disagreement. The appreciably higher
sound absorption than predicted theoretically is attributable to two causes. The
first are the specifics of the excitation used in the experiment, while the second

is attributable to the fact that we have studied a comparatively high frequency

range in which even the relatively thin Prolon layer was a satisfactory damper.

The complexity of the excitation uses is reflected directly in the pattern
of the sound field existing in the air ducts. To illustrate this, Fig. 7 shows the

sound pressure at the inlet section of the duct as a function of the polar angle
over a circle with a constant radius. The logarithm of the sound pressure is

laid off on the ordinate axis, while polar angle @ is laid off on the abscissa.

Figure 7a shows the sound pressure as a function of angle @ for an excita-
tion frequency of 1000 cps, while Fig. 7b shows the same relationship for 4000

cps. The presence of the many minima and maxima points to the fact that a
large number of higher resonance modes of the duct are excited. This is also

shown by the complex distribution of minima and maxima when measuring the
pressure along the pipe axis.

Figure 8 shows the sound pressure distribution along the duct with rigid

walls for an excitation frequency of 2400 cps (Fig. 8a) and 1850 cps (Fig. 8b).
Despite the complexity of the pattern it is still possible to state that there is

practically no attenuation on propagation along the pipe. The marks on the

graph correspond to moving the microphone along the pipe in steps of 10 cm.

The position of the sound source is also marked directly on the graphs.
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Figure 8. Distributionof Sound Pressure

Along a Model with Rigid Walls. a) 2400

cps; b) 1850 cps.

Figure 9 shows the sound pressure distribution along a duct with lined
walls. As can be seen from comparison of Figs. 8 and 9, the presence of the
Prolon liner has no appreciable effect on the sound field in the immediate vicin-
ity of the source (the absolute level is the same), but appreciably increases
sound attenuation along the lined duct. Consequently the pressure drop at the
pipe inlet section of a Prolon-lined air intake, which is shown in Fig. 6, is the
result of sound absorption in impedance walls, rather than that of reduction in
the sound output of sources.

As was pointed out above, the resonators should transform the low modes
excited in the waveguide into higher modes after the sound wave passes the res-
onator. In turn, the higher modes should be more effectively absorbed by active
dampers as the sound propagates further down the waveguide.

The effectiveness of the resonators was checked by comparing the sound
attenuation in a coaxial waveguide equipped with several rows of resonators lo-
cated along the circumferences of the outer and inner pipes with the attenuation
of sound in a similar waveguide, but without resonators. In both cases the en-
tire surface of the waveguide walls free of resonators was lined with a sound-
absorbing material. The measuring procedure consisted in measuring the av-
erage pressure over the entire waveguide section (at the outside section of the
waveguide) as a function of the excitation frequency.
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Figure 9. Distribution of Sound
Pressure Along a Model with

Absorbing Walls.
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Figure 10. Sound Pressure Averaged over
the Outlet Cross Section of the Waveguide

as a Function of the Frequency. 1) With-

out Resonators; 2) with Resonators.

The experimental results are depicted

in Fig. 10. The logarithm of a quanitity
proportional to the average sound pressure
was laid off on the ordinate, while the ex-

citation frequency was plotted on the ab-
scissa. Curve 1 pertains to the case of a

waveguide without resonators, while curve
2 is for a waveguide with resonators. The
resonators were tuned to 1400 cps and had

a Q-factor of 6-8. Here we should note

that the frequencies to which the resonator
was tuned, as well as the Q-factors, were
measured on a separate resonator situated

in free space. It is therefore possible that
due to the changed conditions under which
radiation emanates from the open end of the
resonator when the latter is placed in the

duct, both its Q-factor and the tuning fre-

quency change, but apparently this

change is insignificant with one wave-

guide demension.

It can be seen from examination of Fig. 10 that in the case of a waveguide

with resonators (of which there were 140) and f = 1500 cps, an insignificant in-
crease in attenuation is observed as compared with damping in the absence of

resonators. This increase, which amounted to 2.5 db, lies on the borderline of

experimental accuracy and hence more refined experiments are needed to clar-

ify the qualitative effect.

From our point of view the smallness of the effect noted may be due to the
fact that the excitation source had a complex phasing and apparently excited pri-

marily higher modes, which were absorbed successfully even without the
resonators.
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The following conclusionscanbedrawn from our experiment:

1. Theuse of Prolon coatingsonwalls of compressor air ducts shows
great promise with respect to soundattenuationandcan result in a noise re-
ductionby 15-20db.

2. The useof branch resonatorsfor increasing the dampingof soundat
discrete frequenciescannotbe regardedas a goodmethoddueto the small ef-
fect obtainedandthe difficulties in producingbrancheswith proper frequency
tuning.
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EXPERIMENTAL, STUDY OF THE EFFECT OF ROUGHNESS OF

A SURFACE OF A BAR ON THE INTENSITY AND FREQUENCY OF
VORTEX SOUND

D.V. Bazhenov, L.A. Bazhenova and A.V. Rimskiy-Korsakov

ABSTRACT: The present article deals with the effect of dif-

ferent rough surfaces of a bar on the intensity and frequency
of the vortex sound generated by it as it moves through air,

and on its aerohydrodynamic head drag. Described are
tests of smooth cylindrical bars, bars covered by brass

mesh or a perforated brass tube, as well as grooved bars
(bars were rotated in the "windmill" or "squirrel-cage"

fashion).

It is known that vortex sound is produced whenever a body moves through

a liquid or gas. The study of this sound is of theoretical interest for clarifying
some problems of fluid flow, and is of practical importance for control of noise.
Vortex sound usually predominates in the noise of fans, pumps and other fast-

moving machinery parts.

As far as its spectrum is concerned, vortex sound is a relatively wide-
band noise with a maximum at the frequency

where v is the flow velocity, d is the characteristic dimension of the body (for
a sphere or cylinder d is the radius, for a plate with width l and thickness b

and situated at an angle ¢p to the flow, d = 1 sire + b cos¢p), x is the Strouhal
number, which is a function of the shape of the body and of the Reynolds
number.

On the other hand, since the maximum frequency of vortex sound is equal

to the frequency with which the eddies separate from the body, f can be repre-
sented in the form

/34*

I '

where u is the velocity of the eddies relative to the body, and [ is the distance /3__55
between the eddies.

*Numbers in the margin indicate pagination in the foreign text.

26



Karman andRubach[ 1] related the u. dgof a bodyto the samequantities
(i. e., to l and u). Aeeording to their formula, the head drag coefficient is

l

It can thus be expected that given the same characteristic dimensions of the

body and the same body velocity but different drags, the vortex frequency maxi-
mum should change.

As to the expression of the vortex sound intensity, it can be written in the
form

I ldvn

where r is the distance from the radiator to the measurement point; n according
to various authors lies between 6 and 8 (the formula is qualitative).

As to the intensity of vortex sound accompanied by head drag, it would at

first sight appear that the intensity should be proportional to the drag. How-

ever, this is not always so. For example, it was shown by measuring the in-
tensity of vortex sound generated by a diagonally placed bar of rectangular

cross section that in the velocity range from 20 to 45 m/sec it is lower than
the intensity of a circular cylinder of the same diameter. At the same time,

the head drag of a rec!angular cross sectional bar is appreciably higher. On the
other hand experiments with bars with rough surfaces, produced by milling

grooves in the bars, show that this kind of surface reduces the intensity of

vortex sound while at the same time reducing the head drag. The feasibility of
reducing the noise of fans by use of corrugated blades (whieh reduce the di-

mensions of eddies separating from the blades), was pointed out by Berthold
E2] as early as in 1931. However, this suggestion was not followed up.

In view of the above it is of interest to determine the possibility of sound
attenuation by means of rough coatings of different kinds and to clarify the ef-
fect of these coatings on the head drag.

The Experimental Setup and Principal Results of Measurements

The intensity and frequency spectrum were measured on rotating cylindrical
bars. The first measurements were made for bars rotating in "windmill" fash-

ion. The measuring setup is shown in Fig. 1. The bars (2) were rotated by a
DC motor (1) through a shaft with a flexible clutch. The rpm could be adjusted
from 1000 to 3000 and was measured by a tachometer. The sound pressure was

detected by a MK-5A condenser microphone (3) and was fed through wide-band
amplifier (4) to a N-110 level recorder equipped with a 50 db potentiometer.

When recording the frequency curve of the vortex sound, the signal from the

amplifier was fed to an analyzer produced by Marconi Instrument Co. (5) and
only then to the level recorder (6). The response of the equipment did not
change in comparative measurements. The microphone was placed on an ex-

tension of the axis of revolution of the bar under study, i.e., in the direction

/36
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Figure 1. Schematicof a Setupfor Meas-
uring the Noiseof a "Windmill. "

L,db
3_

2_

/0

z8 .7o js 3o J5
g cps

Figure 2. Noise of a Bar. 1) Smooth Bar, 1.8

cm in Diameter; 2) Smooth Bar, 1.2 cm in Di-
ameter; 3) Smooth Bar, 0.95 cm in Diameter;

4) Grooved Bar, 1.2 cm in Diameter; 5) Mesh-
Covered Smooth Bar, 1.2 cm in Diameter.

of maximum radiation of vortex sound and of absence of rotation sound. We

have measured the level of the vortex sound produced by bars with length 1 =
37 cm and diameter of 1.2 cm. The bars either had smooth surfaces or were

covered with metal mesh with 3 x 3 mm holes.

The metah mesh adhered tightly to the bar and was fastened on it by means
of wood screws at the bar ends. The curve of the sound intensity as a function

of the frequency is shown in Fig. 2. The graph was constructed on the basis
of averaged data. The standard deviation of a single measurement was 0.9 db.
The relative location of the microphone was the same for both bars.

It can be seen from Fig. 2 that the mesh placed on the bar surface quite

appreciably reduces the intensity of the vortex sound produced by the rotating
bar. Thus, when the bar is covered with a mesh with 3 × 3 mm holes the noise
reduction was 7-8.5 db in the range of rotation rates under study. The cause

of this should apparently be sought in the reduction of dimensions of eddies
because of the presence of rough spots on the bar surface.
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Figure 3. A GroovedBar.

In another series of experiments, the bar surfacewasmaderoughby milling
transverse andlongitudinal grooveson it. The bars were 37 cm long and 1.2
cm in diameter, with grooves 1 mm wide and 1 mm deep;the distancebetween
the transverse or longitudinal grooveswas3 mm (Fig. 3). Thegraph (Fig. 2)
presents the results of soundintensity measurementsfor a groovedbar (curve
4). It canbe seenfrom thegraph that groovingof the bar reducesthe vortex
soundlevel by 3 db.

Wehavemeasuredtheintensity of the vortex soundas a function of revolu-
tion of bars with groovesof different depth (0.25, 0.5 and 1 mm). The meas-
urements showed that the deeper the grooves, the greater the reduction in the

vortex sound pressure; however, this reduction is only moderate in absolute
terms.

/37

In order to make sure that the noise reduction due to grooves was not

merely due to effective reduction of the bar cross section, we have measured

the dependence of the vortex sound intensity on the frequency for bars of the
same length (l = 37 em) and different diameters (d = 9.5 mm, 12 mm and 18

mm--Fig. 2, curves 3, 2, and 1, respectively).

The graphs demonstrate that the reduction of the noise level due to surface

roughness is appreciably greater than that due to reducing the diameter by al-
most a factor of two).

In order to determine the aerodynamic drag of bars with rough surfaces
we have measured the power consumed by the motor in rotating the bars. For

this purpose we have first measured the motor efficiency as a function of load
torque at 25, 30, 35, 40 and 45 rps, and then we measured the load torque pro-
duced by each of the bars being tested at the same rps. The graph thus obtained
is shown in Fig. 4.

/38
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Figure 4. Power Consumed for Rotating the Bar.

1) Bar Covered with Mesh; 2) Grooved Bar; 3)
Smooth Bar.
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J_l I_ c_-_ -_L____ Figure 6. Device with Two Rotating Bars.

I) Bar; 2) Disks; 3) Electric Motor.

_//////////////////J_ _//_

It can be seen that the power used by the motor when rotating a smooth bar
(curve 3) and a grooved bar (curve 2) is virtually the same; however, in the case

of the mesh-covered bar (curve 1) the power consumption, which means also the
resistance to the air flow, increases.

With all the above bars, we also measured the frequency spectra of vortex
sound at different rotational speeds. The spectrogram shown in Fig. 5 for a
smooth bar (5a) and a bar covered with a mesh with 3 x 3 mm 2 holes (Fig. 5b)

are typical. The spectrograms show graphically the effectiveness of using such
a coating for reducing the vortex sound level.

By virtue of the fact that the noise reduction on grooved bars is not accom-
panied by an increase in the aerodynamic drag, the subsequent experiments were

performed only with such bars or with indented bars (with round depressions).
The depressions in the bars were obtained by tightly fitting a thin brass tube
over the smooth bar, with round holes predrilled in the tube.

The "windmill" experiments are convenient in that by placing the micro-
phone along the direction of the windmillTs axis of rotation, the vortex sound is

recorded in a practically pure form, without being accompanied by the sound of

t, db o

®.
®.

@.

to 2_ v 2_ z6 z_ ao a2 J, i_ 38 _o _,cps
J i J2_.7 z}, zb 299 _2_ s_TY7 39_',,.a' ,,b _a

_, m/sec

Figure 7. The Noise of Grooved Bars as a

Function of the Velocity.
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Figure 9. Resistance of
a Bar with Grooves on
the Forward Part and Over

the Entire Perimenter.

rotation. However, due to the fact that
the linear velocity on the windmill in-

creases along the bar, it is inconvenient
to measure the vortex sound as a func-

tion of this velocity. Hence we have per-
formed a series of experiments with two

bars, which were placed along genera-

trixes of a cylinder ("squirrel cage"),
between two coaxial solid disks, so that

the system would be dynamically bal-
anced.

Figure 8. Noise Spectrum. a) Of a The presence of the circular disks /40

Smooth Bar; b) of a Grooved Bar; c) between which the bars were fastened
of a Bar Grooved Only In its For- does not introduce any errors; as was

ward Part. shown by preliminary tests, the noise
level produced by the disks proper (with-

out the bars) lies appreciably below the level of the vortex sound of the bars.

The bars tested were 18 cm long and 1.4 cm in diameter. It follows from the
results shown in Fig. 7 that the presence of longitudinal grooves on the entire

bar surface gives a reduction in the intensity of vortex noise (which increases
with the velocity of the bar). The number of grooves has no appreciable effect

on this reduction (no perceptible noise reduction is produced by transverse
grooves). On the other hand, the presence of grooves only on the forward part
of the bar increases the effect at highest velocities by a factor of two. The vor- /42

tex sound maximum for a grooved bar (Fig. 8b) is displaced in the direction of
higher frequencies as compared with a smooth bar (Fig. 8a); in addition, when

only the forward part of the bar is grooved (Fig. 8c), this displacement is

greater. The frequency characteristics were read with the bars rotating at 26
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Figure 10. Noise of Indented Bars. a) Smooth Bar; b) Indentations (4 mm
in Diameter); c) Indentations (8 mm in Diameter). The Rotational Fre-

quencies were 19, 7, 29.4 and 38.4 eps.

cps. The head drag, determined by measuring the motor power consumption, is

lower for the grooved bar and is the same for a completely grooved bar and for
a bar with only the forward part grooved (see Fig. 9). A grooved bar thus has a
lower drag than a smooth one, i.e., it behaves as if it were more streamlined.

This is substantiated by measuring the velocity of the wind produced by the bars.
This was measured by an anemometer, placed in the immediate vicinity of the
moving bars. The results are tabulated below.

TABLE

Description of Bar Frequency, cps Wind Velocity, m/sec

Smooth

Grooved

34.7
43.5
34.7

43.5

7.1

8.8
5.9
7.6

It can be seen from the table that the velocity of the wind produced by the
smooth bar is higher than that due to the smooth bar. The grooved bar thus

entrains less air, and consequently the absolute velocity with which it impinges
onto the medium is greater than in the case of the smooth bar. The sound ra-

diation is also lower than that of a smooth bar. It may be assumed that at

equal speeds of impinging onto the medium, the noise reduction gain produced
by the grooves would be even more appreciable.

The total noise level for the three indented bars rotated at 19.7, 29.4 and
38.4 cps is shown in Fig. 10. The greatest effect is obtained with a bar with

8 mm indentations. At a frequency of 29.4 cps the noise level produced by this
bar is 10 db lower.

A quite substantial contribution to the total level measured on the "squirrel
cage" is made by the sound of rotation, which becomes particularly perceptible
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Figure 11. Noise Spectra of Bars. a) Indented Bar
(8mm Diameter Indentations); b) Smooth Bar.

when vortex noise level is reduced. The frequency characteristics determined

for the bar with 8 mm indentations (Fig. lla) and for the smooth bar (Fig. llb)

clearly exhibit the presence of discrete components at frequencies of 52, 104,
156 and 208 cps, which correspond to the frequency of the sound of rotation and
its harmonics, The actual effectiveness of the indentations and grooves is thus

even greater than that resulting from comparison of the total levels.

It can be seen from the frequency characteristics presented here that the

use of these surfaces not only reduces the peak of the vortex sound, but also

shifts it in the direction of lower frequencies.

The head drag for the perforated and smooth bars remains the same.
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PROPAGATION OF SOUND IN A CYLINDRICAL PIPE WITH STREAMLINED

IMPEDANCE WALLS

A.V. Rimskiy-Korsakov and P.G. Kolev

ABSTRACT: The article proposes extending the problem of
sound propagation in a pipeline with impedance walls to the

case of a moving medium with mth symmetry of the wave
being excited.

This problem, was considered by B. P. Konstantinov E I_ but without taking /45*
into account the motion of the medium. Konstantinov has also taken into account I

the effect of the thermal conductivity of the walls on the manner in which the
sound propagates in cylindrical pipes. The motion of the medium should intro-

duce corrections to the problem. Hence we shall solve the problem of sou_,d

with the mth symmetry in a pipe with an impedance wall taking into account the

motion of the medium but not considering its viscosity and thermal conductivity.

f
g

Orientation of Coordinate Axes.

The wave equation for a moving medium in a stationary coordinate system
(see the figure) has the form (see, for example, E2_)

i (;a o),p 0AP -- -_ _ + V = ,

where V is the speed of the medium and c is the speed of sound.
solution of Eq. (1) in the form

(1)

We seek the

P = exp [-- io)t + ik_x + im_p] R (r), (2)

where r=]/'y_+z_; k=-°-.
¢

Let V/c = B, then Eq. (1) in cylindrical coordinates

*Numbers in the margin indicate pagination in the foreign text.
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will havethe form

t
t) + r_ _t0 (rPr) -4- -_-t p,_ __ _p_ __ _ Px, -- _ P, = O.

Substituting Eq. (2) into the above expression and dividing through by oxp

[-- i¢ot -4- ik_ x -4- irn_! we have

(1')

/46

[o [rB_(r)I _ k'--(t--_t)ktx--2_kk_---_ R(r)-----0.r dr (3)

The general solution of Eq. (3) for integral m has the form

where

R (r) = aa Jm (,,,r) -i- av_m (_r),

T = Ilk _ :-- kx lkx (t -- [tz) + 2_lkl. (4)

We now introduce the boundary conditions. The pressures and displace-
ments in both media must be equal at the boundary. In the moving medium, we
have

o_ +V oo VP (5)
o'-T -_x :-: p'

0_ 0_
o-7= v, -- V_-, (6)

where v is the rth component of the vibratory rate, and _ is the displacement
r

of the boundary.

From Eq. (5) we have

I OP

p Or

Vr -" i_ -- ikxV
(5')

while displacement _ is sought in the form proportional to the same factor

exp [-- i(ot + ik_x + imp]. From Eq. (6) we get

Vr = -- _ (i_O-- i]fx_). (6 ')

We assign the subscript 1 to the moving medium and subscript 2 to the

stationary medium, and then from Eqs. (5') and (6')

I OPI t

-- _t = V-_ Or (io_--ik=g) t " (7)
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Similarly, for the stationary medium, V = 0

t OPz t
(s)

The boundary conditions give

I OP1 t I OPs t

--_'=- pl Or (ito--ikxlr) 2 _-_ Or (i_)_ " (9)

Let the wave impedance of the stationary medium be Z; then

Z- P2 P1
v2 t oP1 ho "

pl Or (io_--ikxV)*

(10)

Making use of Eqs. (2) and (4) we will get for the two boundaries in the cylin-
drical pipe

/47

ZI = -- ipc (kx_ - It) _ [alY,n ('fI)) _'.- a2N m (TD)]

k'_" [alftn (_I)) -_- a2N _/']'.D)I

Z2 -- -- igc (kxg -- k)2 [alJm ('I'd) !- a2N m (Td)]

'k'r [%J'm ('rd) q a2N"m (ld)l (11)

The above expressions form a homogeneous system of two equations with two

unknowns a I and a2; hence if a nontrivial solution is to exist, it is necessary and

sufficient that the determinant of the system be equal to zero. This determinant
has the form

fill a12a21 a21 ' (12)

where

.n = iOc (k _k--k),j_, (yD) + Z_J'_ (_'D); a,_ = ioc (k_--k),_ X

× Nm(TD)-t- ZffN'_(TD); a2x = ipt (k_--k)_'Jmk (Td) + Z_TJ'_ (Td);

a22-- _o__k_____k), Wm (Td) -Jr- Z2TN'm (rd).

We now analyze the results obtained above. For simplicity we shall con-
sider the case when there is no internal boundary, i.e., propagation of sound
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in a hollow pipe.

a2 = 0 and

In this case the field has no singular points, i.e., in Eq. (4)

P = [oxp (-- i_t + ik_x + im_)] a_l,_ (Tr).

The first of Eqs. (11) takes on the form

Zx = --ipc(kx[_--k)'Jm(TD) (II')

For the case of a solid boundary Z 2 = _, i.e.,

J_ (TD) = O. (13)

The roots of the above equation are

_,_D=/=0.

Knowing the roots of Eq. (13), we can write an expression for k
X

T"= 7'= k'--k_(I--_z)_ 2[lkk_ (14)

or

--[_k+ ]/k,--T_+ $'T_ (14')
ks= l--If'

If Z1 _ _, then it becomes possible to influence Yh' which also means influencing

k by proper selection of boundary impedance conditions.x

The complete problem can be solved only by numerical methods [ computer].

An approximate solution is possible in the limiting case of yD<< 1. In this

case and with Z 1 = iZ 0, Eq. (11') becomes

Z_o= (_'--_)" O
pc k m •

/4_ s

from where it is seen that k
x

symmetry is possible

is real and the propagation of a wave with mth

k:_= k--pcD/_.
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IfyD<< 1, but Zl -- Z0 is real, then

iZorn_ c
k_ = (k ÷ --_-fi /-_.

This shows that the wave being considered is damped due to absorption at the im-
pedance boundary. However, the absorption obviously is reduced when the in-
take pipe diameter is sufficiently large. Rigorous analysis makes it necessary
to numerically calculate roots of a transcendental equation. The relative part
of the energy contained in the given normal wave is determined by the character
of excitation along the pipe radius.
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EFFECT OF THE REACTION OF THE MEDIUM ON THE OPERATION OF A
RADIATOR IN A WAVEGUIDE

A.D. Lapin and Yu. P. Lysanov

ABSTRACT: This article presents calculations of the radiation

impedance and of the associated mass of a cylindrical radiator,
situated in a waveguide with perfect reflecting boundaries.

It is known that the sound field in a waveguide with perfect plane reflecting

walls can be represented as a sum of normal waves [1]. In the case of a "point"

radiating source (the dimensions of the radiator are much smaller than the sonic
wavelength) with a given space' velocity, the /th normal wave is proportional to a
first kind, zero-order Hankel function, i.e.,

_ -- I-1_o_ (_tr) , (1)

/49*

where r is the horizontal distance from the observer to the radiator, and _l is

the horizontal component of the wave factor for the given normal wave. In this

¢case _ = k' -- , if both boundaries of the waveguide are perfectly stiff or

perfectly compliant, and _t = ]//k S -- [._ (t +h V2)]' , if one boundary is perfectly stiff

and the other perfectly compliant. Here h is the thickness of the waveguide and
l = 0, 1, 2 .... It follows from Eq. (1) that the sound pressure in an Ith normal

wave becomes infinite whenever E l = 0. In this case the normal wave becomes

a standing wave across the thickness of the layer. Obviously, this result has no

physical meaning. The infinite increase of the sound pressure in an Ith normal
wave at its "critical" frequency, which is determined from the condition that

_I = 0, has been called transverse resonance. It is pointed out in [1] that "the

radiation impedance of the source in this case goes to infinity. " However, as
far as known to the authors, the radiation impedance of any source located in a

waveguide has not as yet been calculated.

It is of interest to examine the causes of transverse resonance and at the

same time to calculate the radiation impedance of a source with finite dimen-

sions located in a waveguide. We made the calculations for the following ar-

rangement. Let the radiator be a cylinder with radius a and height 2b, and let
it execute radial oscillations; the top and bottom surfaces of the cylinders are

regarded as perfectly stiff. The top boundary of the waveguide (the plane z = h)
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is perfectly compliant, while the lower boundary(theplanez = O)is perfectly
stiff (seefigure).

z

t
h

h_--m- r
zo- 4-_ I 2b

h, ,____I Schematic of a Waveguide with a Source.
I I

We formulate the problem. It is required to find the solution of the equation

g_--; _---0-_-- - .=0, (2)

which would satisfy: a) boundary conditions $ = 0 at z = h, a_/0z = 0 at z = 0;

o_b/_z = 0atz=h 1 andz=h 2 and for r_a; b) the condition at the radiator that

o_/0r = v0 at r = a and h 1 _ z _h 2 , where v0 is the radial velocity of the surface

of the radiator, and c) the condition at infinity, that the field at r --_ o_should con-
sist of diverging waves.

Denoting the space velocity of the radiator by V0 = 4vabv0, we can represent

the sound fields in different regions of the waveguides in the form

_ _ ulx, (_.p) cos (k.z), (r _ a, 0 _ z _ h),(r, z) = I% -..,, o
n==o

(3)

f:c

_(r, _)= V0 E &/o & r) co_&z), (r<a, 0<z<h,), (4)

T_
(5)

where we have used the notation /51

and I 0

k. = (t + 2n) _t
2h '

__ n__'t ; _n = (t -b2n)n

is a zero-order Bessel function.

(6)
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It is easy to see that Eqs. (3)-(5) satisfy Eq. (2) and the boundary conditions

atz =0, h 1, h 2 andh.

The constants A n, An and An can be determined uniquely at the junction

(sewing together) of the fields at r = a. From the condition of continuity of sound

pressure at r = a, 0 < z <h t, we get

oo

where

Here

hi

Otnm _--- COS nZ COS Z Z

2 wbe.Ore---- 1 when

i when k. =//m,

-_ 2kn sin (k.hl) .
(- t)'_ omh,(k_--_",_)'

m----O.

m_O.

when k. =]ffik_,n. (8)

Similarly, from continuity of sound pressure at r = a, h 2 <_ z<h, we have

antaH (1) (_ma)

2"=--_' ,.<L.) A., (9)

where

cos (k_z) cos Ik,,, (z-- h,)l dz ffi

[ (-- t) 'v''_, when k,, = _m;
= _ 2kn sin (knhs) . L._,-- .,-v=:r--_,_, .v._**k.÷_.

t (h- h,)(k n-k_,)

Finally, from continuity of the radial velocity

[ ($)_°I (0 _ z _ hi)

(hi < z < h,)

(h, < z < h)

(10)

(11)
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we get an infinite systemof linear algebraic equationsfor determining the
amplitudesA :

m

co

Am _mh_t,a_ (L_a) z,=o-
(12)

where

sin (kmb)
_,n_ (kmb--------_CosCkmZo), (13)

D, = + (h-- h,) ,,,. ,.
L lo (_.a) Io (_,,a)

(14)

Equations (12) through (14) give a rigorous solution of the problem. Analysis
of the results can be appreciably simplified ff we restrict ourselves to the case
when ka --. 0 (the cylinder radius is very small compared with the sonic wave-

length). In this approximation, we get

Then the expression

D,--_O; Am-'* 2h (15)

(r, z)-_ -- W__o_ _ Hi,) (_.r) cos (kmz) (16)
2h

m-----------------_@

defines the sound field for a known radiator velocity VQ. It follows from Eq. (16)

that when _l --* 0, the sound pressure in an lth normal wave goes to infinity due

to the fact that Hankel's function increases beyond bounds.

The preceding discussion was based on the assumption of a constant space
velocity of the source in the waveguide. We shall now show that at frequencies
close to the critical frequency of one of the normal wave, this assumption does

not hold even approximately.

We now calculate the value of V0 which is produced at the radiator by a

force F = F0e-i cot when the reaction of the medium is taken into account. We

denote the mass of the radiator by m0, the frictional resistance by R 0, the
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complianceby × and the deflection of the cylinder's radius from its equilibrium

position (which is a)by _ (t). The equation of motion for the radiator can then be
written as

t

mot "-1-Ro_ + --_-_ = (Fo--(l)o)e "l''t, (17)

/53

where the dot denotes differentiation with respect to time. _0' the reaction of the

medium, is defined as

z0+b

q)o = 2:ta ,._._¢I P (r , z) lr._ dz.
(18)

Substituting Eq. (3) into Eq. (18) and making use of the fact that voe -_t -----_,

it is possible to write Eq. (18) in the form

where Bra d

= -- _- Im {icopS_ __j A,,_nH(o 1' (_na)}is the associated mass, S O =
n_0

_)0 = Vo (Rra d- i¢om) ----(Rrad_ + m_)e'",

= Re{i(opS_o Z A._ ,,H(ol) (_,a)} is the radiation impedance, m ------

4rrab is the area

of the radiaung surface, and p is the density of the medium.

The solution of Eq. (17) is

(t) ---- fl'---2--_ (19)

where

Zad = [B + i(£--¢_)M)]. (20)

R -----R 0 + Rad, M-- m 0 + m is the effective mass of the radiator.

Now we can get an expression for the space velocity of the radiator with the
reaction of the medium taken into account

F,8____, (21)
Vo = Zrac _
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We analyzethe solution thus obtainedagainfor the caseof ka <<1. Here the
amplitudesof normal waveswill beobtainedfrom Eq. (15), while

_ad _Re [-- _- _'_=o
(22)

and /54

(23)

It follows from Eqs. (22) and (23) that, as the frequency of sound approaches

the critical frequency of the /th wave, _l -_ 0 and, consequently, the radiation

impedance or the associated mass of the radiator go to infinity as ln(_.la/2 ), and

the space velocity V 0, according to Eq. (21), goes to zero. Since V£ goes to zero

according to the same law which governs the increase of function H(1) (: r), the
0 _l

sound pressure in the given normal wave remains finite.

It is of interest to determine the character of the sound field in a waveguide

at a frequency which coincides with the critical frequency of one of the normal
waves. As is known, normal waves at frequencies above their critical frequen-

cies are waves traveling along the waveguide, while at frequencies below their
critical frequencies these are inhomogeneous waves which are damped exponen-

tially as they move away from the source.

Let us assume that the sonic frequencyapproaches the critical frequency of

the Ith normal wave, i.e., _l --_0. We isolate in Eq. (16) the term corre-

sponding to such a wave

GO

--iVo (knZ) -- _ _tH_, l) (_lr) cos(k/z).(r, z)=---_- _ _nH(o*)'(_nr)cos
nca

(24)

Knowing that _l _ 0, it is possible to retain in Eqs. (22) and (23) only [th terms

and to neglect 140 and m 0 as compared with Rra d and m, respectively. Then we

will get the following approximate expression

Vo : _hFo (25)
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When_l -* 0, V --*0 and, consequently,the first term in the right-hand side of
Eq. (24)also goes to zero (since the summandis finite}; on the other hand, the
secondterm in Eq. (24)will be finite, since thenHankel's function will go to in-
finity. Substituting(25)into Eq. (24)andreplacing Hankel's function by its
approximateexpressionfor small valuesof the argument(_/r <<1), weget

(r, z)=

or, solving the indeterminacy as _l -* 0 (a =/=0, b =/=0)
/55

(r,z)= Focos_.______s (26)
it_pSd31-

Thus, when g! = 0 only one/th normal wave is excited, and its amplitude does not

vary with the distance from the sound source, but remains constant. From the
physical point of view this fact is quite obvious: a normal wave at the critical
frequency is a standing wave over z, there is no propagation over r and thus it

does not depend on r.
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RADIATIONOF AN ELASTICDISCONTINUOUSWALL IN
A MOVINGMEDIUM

A.D. Lapin

ABSTRACT: The article considersa soundfield which is pro-
ducedin a homogeneousflow of an ideal fluid by a discontinuous
elastic wall, which executesinducedvibrations under the effect
of randomforces. It is assumedthat theproperties of thewall
vary periodically. Thequalitative behaviorof variations in the
field characteristics as a function of variation of wall para-
meters, the motion of the mediumandthe properties of the sta-
tistical forces is clarified.

The soundfield producedin a stationary mediumby an elastic, periodically
discontinuouswall, vibrating under the action of statistically distributed forces
wascalculated in [11. It is of interest to find the soundfield which is produced
by this wall in a movingmedium. In the present paper this problem is examined
on the assumptionthat the mediummovesparallel to the wall with constantve-
locity U. No limitations are placedon the magnitudeof discontinuities. It is
assumedthat the excitation force is a harmonic function of time; the time factor
exp/-i 0_t) will be skipped throughout.

We select a Cartesian coordinate system in such a manner that the plane
z = 0 will coincide with. the wall, the x axis will coincide with the direction of
motion of the medium and the z axis will be directed from the wall into the me-

dium. It is assumed for simplicity that the properties of the wall vary only
along the x coordinate; the period of these discontinuities is denoted by d. Let

the wall be acted upon by a distributed force f{x, y} which is a homogeneous sta-
tistical function of the point. We assume that the equation of free vibrations of
the wall in the absence of a medium has the form

/56*

(_' + L) [ = O,

where L is a linear differential operator characterizing the elastic properties

of the wall, p is the surface density of the wall, and _ is the lateral displace-

ment. For example, for a membrane L = T O V 2, where T O is the membrane

tension. For an inhomogeneous plate executing flexural vibrations, this opera-
tor has the form

/57

L {(,= -- ¢_)_ OU2

*Numbers in the margin indicate pagination in the foreign text.
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where a is Poisson's ratio and Dis _,le cylindrical stiffness. The stiffness is

expressed as

EhS
D---

t2 (t -- as)_

where h is the thickness of the plate and E is Young's modulus. We denote the
sound pressure in the medium by p(x, y, z). Then the equation of forced vibra-

tions of the wall due to force f(x, y), with the reaction of the medium taken into
account, is

_ (p_Z +L) _ tp(z, y, O) =/(x, y). (1)

The equality of normal velocity components at the interface between the wall and
the moving medium will be written as

where P0 and c o are, respectively, the density of the medium and the speed of

sound in it, {3 = U/c 0 is the Mach number, and k 0 = u_/c 0.

We shall seek the solution by the Fourier method. According to [2], we

shall expand function f(x, y)into harmonics by the Fourier-Stieljes integral

oo

! (_, y)= II"'_P[_(mx+ ny)ldg(m,n),
--00

(3)

where g(m, n) is a random function with uncorrelated increments. This means
that this function satisfies the expression

0 when m--_-m' or n_n",tg (m, n) dg" (m', n') = G (m, u) am dn when m = m', n = n',

where the asterisk denotes a conjugate complex quantity and the bar denotes

statistical averaging. Function G(m, n) is related to the correlation function of
the force

R Cz-- z', y -- y') = ! (_, y) F Cx',y')

by the expression

a (m. n) - _ R ('% _) exp [-- i Cm'_.+ nTv)ld,.d_v.
_00

(4)
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Let us now find fields produced separately by each of the harmonics of

expansion (3}. The sought field will then be obtained by adding these fields.

First we find the solution for the inducing force

]m_(x,Y) = a (m, n) exp [i(mx + ny)].

Since the properties of the wall vary periodically along the x axis, the displace-

meat _ mmwhich is due to force f mm can be represented in the form

/58

.._.(x, y) = aexp [i(mx-f- ny)] F(x),

where F(x) is a periodic function with the same period. This function will be
sought in the form of the Fourier series

oo

F(z) = _ Bqexp(if_x),
q_ -......oo

where _q = ____q.
medium

The sound field p satisfies the wave equation in the moving
mn

a },V_p._n = {_ _-- ik Pmn

and the boundary condition

a 2

= _ apoc2o{k0 -- _ (m A- .Qq)}2 B_ exp {i [(m at- _) x "4- ny]}.
q==--¢¢

This field can be represented in the form

p.,. (z, y, z) = __j aAq exp {i [im + .Qq)x + ny "4-
qw_

+ g[k,-- It (m + nq)]'-- T_z]},

where

Aq: --i

]/'[k0 -- _ (m -_ -Qa)I' -- T_
Bq; ]'_ : I(m -4- Q¢)s -Jr nSl.
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Thus the sound field produced by force fmn consists of plane waves ("spectra"),

the direction cosines of which are governed by a condition similar to Bragg's
condition.

Quantities B will be determined from Eq. (1). We expand the parameters
q

characterizing the inhomogeneous properties of the wall into a Fourier series,

substitute these series and the quantities _mn ' Pmn and fmn into Eq. (1), then

equate the coefficients of the same exponents in the right and left-hand sides.
Then we will get an infinite system of algebraic equations for Bq

/59

where

@@

lko-- _(._ + t_q)l' I B_ = [ _0_ , (5)
_d {Lqt + _'M,} B(q_,) q- iPoc_ ]/'[ko -- 13(m q- flq)]' -- T_

,i_""'_

all

La ="ff exp{--iI(rn+f_q)x+nyl}L{exp{il(rnq-ftq_)xq-

+ nylI} dz,

M z = -_- p (x) exp (-- ifllx ) dz,

{_ when q=#O6o_ = when q = O.

= T__2 6 while for a plate we haveFor example, for a membrane Lql 0 q 0/'

Lql {(t -- ¢_)n2 _ -- 2 s Nt,= TqT(q_o}

where

a/I

t __ D (x) exp (-- ifhx) dx.Nz = "7-
12

Solving Eqs. (5), we get Bq, and consequently Aq.

all the f mn' we get

Summing the effect of
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{_ oo

q....---O0

p(z,y,z)= _ IIAq(m,n)explitm+_q)xTny+

± V [ks--_(m + q_)ll-- T_zl} dg. (6)

These formulas give the solution for the problem for an infinite wall.

We shall now find the sound field radiated by a finite wall which vibrates
due to an inducing force f(x, y}. The correlation radius of this force will be as-

sumed small as compared to the dimensions of the wall. On this assumption
it is possible to assume that the displacement of the wall far from its edges

does not depend on boundary conditions and is expressed by Eq. (6). We shall

calculate the sound field from Green's single-term formula. In the "compressed"

coordinate system (_ = z
l_' g' z) , this formula is written in the form

/6O

i_tl,.r

,  t'op _7_es,P.u -- 2._ JJ Oz
S

where S is the surface of the wall, r= {(2 -- 2M)' + (Y-- Y_)" + (: -- z._f):}", is the

distance from surface element dS to the point of observation M with coordinates

~ 7+_(_--7n) According to Eqs. (2) and (6), the quantity
(x_f, YM, zM_, r = V) ----:-_

(ap/aZ)z=0 has the form

(_)z----_ = p°¢°2 !i gl (m, n)exp [i (mx + ny)] dmdn, (7)

where

O3

q_cc

(8)

We shall assume that the point of observation is situated at a large distance
of the wall, in the Fraunhofer region, Then we can write (see E37)

--_- exp i Vi--_32 --ny (9)- ,o L '

where
ko (_os b'cos _- 13) - k0 cos 6"si_

In= /2 --

(_ --1_:) ' V1 -13'

51



-_0is the distancefrom the origin to point M, 0 is the angle between the direction

to the point of observation and the wall, _ is theangle between the projection of
this direction onto the wall and axis _. Angles 0 and ¢_ differ from the corre-

sponding angles 0 and _ in the (x, y, z) coordinate system by a magnitude of the

order/32. Substituting Eqs. (7) and (9) into Green's formula and integrating

it by the method presented in E4], we get

/61

We now calculate the root-mean-square sound pressure in the moving me-

dium. This quantity is given by

Using Eq.

4_2po2{0 _ _

PMPM ---- _ gi (m, n) gl (m, n).
r o

(8) and the expression

g (m, n) g" (m, n) = (--f_- t (x, y) (x,y)x

× exp {i [m (x' _ x) + n (y' -- y) ]} dx dy dx' dy' = (_G(m,n),

we get

_n 4

ro2

oo

I Bq(m-- _q,n) [_ G (m -- Qq, n),
q_--O0

(10)

Substituting into this expression coefficients Bq which are obtained by solving

system of equations (5), and the spectral density of intensity G calculated from

Eq. (4), we will find the root-mean-square of the sound pressure.

In the general case it is convenient to seek the solution of system of equa-

tions (5) by the method of successive approximations. To make the use of this
method possible, it is sufficient that the system of equations be regular E5]. It
can be shown that in the case at hand the condition of regularity is satisfied if

the functions characterizing the inhomogeneous properties of the wall are suffi-

ciently smooth. In the zero approximation of the method of successive approxi-
mations, we have

8oq

poc_(ko-- _m)' }
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Substitutingtheseeooeffieientsinto Eq. (10), wewill get a solution of the prob-

lem for a homogeneous wall, which is identical with the solution found by another
method in [6]. In the first approximation we get

{_oq+ (1-- 8oq) [Lqq+ o%',lq] Bo}

i T

/62

This approximation takes into account the effect of small inhomogeneities of the

wall on its radiation. For large inhomogeneities use should be made of higher-
order approximations.
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Figure 1. Characteristic Curve of Radiation

for k0_- 0 = 1.

As was pointed out above, the spectral density of intensity can be calculated
from Eq. (4) by specifying the correlation function of the force. For an isotropic

I
2 In this case Eq. (4)force, the correlation function depends only onv = _/T _ + T,-

simplifies to the form

oo

G (m,n) = _-_ I zR (T)Jo(]f_ =F n" x)d_,
0

where J0 is a zero-order Bessel function. For example, for correlation func-

tions specified in the form

.R (I:)= _' exp (--_"] v_)and "('r)= _' exp (--_'o[o ) '
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2
where a
have

= f(x, y) f*(x,y) and r 0 is the characteristic scale of the force, we

G(m, n)= (wr°)2 exp{ t } (11)

/63

and

C (m, n) = i__ {a_'o)s
2a II + (m' + n_)%sl °/''

As an illustration, we calculate the radiation from a steel plate with thick-

ness

h (:r) _ ho --_ hl cos (-_- x) ,

in air. It is given that

hl/h0 = 0.25, koh 0 = 0.4, k0d = 20, P0 = p/h = 7.8 grams/cm 3;

E = 2.1. 1012dynes/cm2; o = 0.29, P0 = 0. 0013 grams/cm3; c o = 330 m/sec.

_db

! I iJt 11

,i iiI

II I_ II jl
II I I I| II

-g:5 o O5 £_
cos$

Figure 2. Characteristic Curve for k0r 0 -- 5.

We specify the spectral density of the intensity of the force in the form of

Eq. (11). The solid lines in Figs. 1 and 2 show the graphs of the quantity

+ ,I,)(]) (0) = t0 lg {4n.tO a (koToa)'S
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as a function of cos0 , calculatedby the abovemethodfor _ = 0.2 at k070= i and
k0T0 = 5, respectively. For comparison, the same figures show by dashed lines

the corresponding graphs obtained with _ = 0. It can be seen from these graphs
that the motion of the medium has a pronounced effect on the characteristic

curve of the radiation of an inhomogeneous plate.

/64
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PULSATIONSOF COLLIDINGAXISYMMETRICALJETSOF GASEOUS
OXIDIZERANDPROPELLANT

V. I. Kondrat'yev

ABSTRACT: Thepresent article describes the pulsationsof
flames produceduponcollisions betweenaxisymmetrical jets
of propane-butaneandoxygen, andthe soundformation at-
tendantto it. Pictures obtainedwith a high-speedmovie
camera showthe modeof theflame pulsations. Flame pul-
sationfrequencies at different oxidizer andpropellant speeds
are also presented.

A special kind of a "singing" flame, which is producedon the collision of
plane jets of gaseousoxygenandpropane-butanewasdescribed in [I]. Using
the samesetupas in [1], experimentswere performed with colliding axisym-
metrical jets. The latter were obtainedfrom nozzleswith a circular cross
section from 1.0 to 4.0 mm in diameter, with the diameter of the oxygennozzle
beinglarger thanthat of the propanenozzle. Themodeof flame pulsation was
recordedby a high-speedSKS-1Mmoving-picture camera. The characteristics
of the noise formed on the flame pulsations were recorded by an 1/4" B&K
microphoneandby an $4-7 analyzer.

A head-oncollision betweenaxisymmetrical jets of gaseouspropane-
butaneandoxygenproducesa flame the modeandbehaviorof whosepulsations

varies depending on the relationship between the gas jet speeds, the diameters

/65*
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11o
115
133
143
373

10.23
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10.23
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5.98
5.10

15
24
11
12
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1.8

1.1
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0.85
t.0
1.t

of the outlet and the distance between the nozzles. The flame may be stable, not

radiating sound (and in this case the flame front is clearly delineated) and un-
stable, pulsating randomly, radiating "white noise" or a periodic noise ("singing"
flame). The periodic flame pulsations which are observed for overall oxidizer
and propellant speeds from 2 to 30 m/sec and distances of from 5 to 30 mm
between the nozzle can be divided into three kinds:

*Numbers in the margin indicate pagination in the foreign text.
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Schematic Diagram of Flame
Pulsations on Rotation of the

Jets. 1 through 8 is a Time
Sequence of Frames.

1) flame pulsations similar to those which
arise on symmetrical collisions of plane jets
[1];

2) elliptically-polarized flame pulsations,

i. e., flame pulsations of the first kind in a
plane rotating about its axis of symmetry;

3) rotation of the flame about its axis of

symmetry.

The second kind of pulsations, which is

observed quite infrequently, was noted at
speeds of 8.3 and 4.8 m/sec of the oxidizer

and propellant, respectively, and at a dis-
tance of 11 mm between the nozzles. The

fundamental frequency of the sound which was
radiated was the same as the pulsation fre-

quency of the flame, i.e., 390 cps; here the
frequency of rotation of the plane in which the

pulsations took place was 39 cps. The figure
depicts schematically flame pulsations of the
third kind which are apparently due to the ro-

tation of the jets. The hump distorting the
outer boundary of the flame front is produced

by the fact that the end of propellant jet B is
deflected more at the point of collision than

the end of oxygen jet A. The frequency Z of
the rotation of the hump and the flame as a
whole is the same as the fundamental fre-

quency of the radiated sound. An idea about
the relationship between the flame rotation
frequency and the jet speeds for different
distances between the nozzles can be obtained

from the appended table.

In the table f is the flame rotation fre-

quency in cps, V1 and V2 are the oxidizer

and propellant velocities, averaged over the
cross section, in m/sec, S is the distance

between nozzles in ram, and d 1 and d 2 are

the diameters of the oxygen and propane

nozzles, respectively.
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FREQUENCY CHARACTERISTICS OF BAR-TYPE GAS-JET
ACOUSTIC GENERATORS

Yu. Ya. Borisov and N.M. Gykina

ABSTRACT: The present article presents results of an ex-
perimental study of the relationship between the internal
structure of the jet and the frequency of sound vibrations
produced by the generator and the geometric dimensions of
some of its principal elements, i.e., the bar and jet diam-
eter, resonator dimensions, etc.

As a result of work performed in developing acoustic nozzles for atomiz-
ing liquid fuel El, 2] a great deal of interest is expressed lately in gas-jet gen-
erators, in particular in bar-type radiators, which are most economical and
stable in operation E3, 4]. Bar-type radiators, similar to Hartmann's genera-
tor, have inherent resonance frequencies at which the acoustic power, and
consequently also the efficiency are maximum [5].

The design of gas-jet radiators involves difficulties not only in estimating
the power, but also the frequency for the specified parameters of the device.
This is in part due to the almost total lack of theoretical work on this problem
(of certain interest in this respect is the recent article by M_rch E6], although
it is concerned with a simpler model--generation of sound by a supersonic jet
colliding with a fiat reflecting disk). Another cause is the large number of

factors affecting the frequency of radiation, i.e., diameters d n of the nozzle,

d r of the resonator, d b of the bar, the resonator depth h, the nozzle-to-

resonator distance l, as well as the compressed air pressure P (see the
schematic of a bar-type radiator in Fig. 1).

In the process of developing new gas-jet radiators of acoustic energy we
have experimentally clarified some relationships between the generation fre-
quency and the tuning parameters and the structural dimensions of the whistle.

It is known that in the sonic (conical) nozzle, the length of the first cell
of the jet of air discharged to the atmosphere is determined by [ 7]

/68*
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Ao = 1o12dn_/P _ 0,9

(here L 0 and d n are expressed in ram, and Pis in kg/cm2). Due to the in-

availability of data on distortion of the jet upon introduction of a center bar and
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Figure 1. Schematic Diagram of a Bar-Type
Radiator.

a resonant cavity into it, we have performed studies to determine the effect of
these components on the distribution of static pressure in the jet. The mea-

surements were made by means of a pressure measuring tube 1 mm in diameter.
Figure 2 shows the length of the first cell of the jet (for a nozzle pressure of

3 atm gage) as a function of the nozzle and bar diameters. Similar measure-

ments were also made at other air pressures for the same range of nozzle and

bar diameters (d n -- 3-13 ram, d b = 3-8 mm). It can be seen from this figure

that, as the bar diameter is made larger, i.e., as the effective opening of the
nozzle becomes smaller, the length of the cell decreases. The empirical for-
mula which was derived on the basis of our measurements has the form

= (t.iao- 0.08a - 0.iSd0 Vt' -- o.9 .

Since the operating frequency of Hartmann's generator is inversely pro-

portional to the nozzle diameter, while the energy of the jet and consequently
the radiation power is determined by the jet's cross section, then an increase
in frequency in ordinary radiators involves an appreciable reduction in the

acoustic power. From this point of view bar-type radiators are of great in-
terest, since reducing the cell length by introducing a central bar permits in-
creasing the frequency without appreciably changing the jet's cross section.

This makes it possible to attempt developing higher power high-frequency
radiators by increasing the energy of the jet in the annular nozzle.

The coaxial placing of a resonant cylindrical cavity in a jet produces

high-power acoustic vibrations in the system; the frequency of these vibrations
is determined by the length of the cell, as well as by the parameter's of the

resonator. However, Hartmann has noted that elastic vibrations may appear
in the jet even when the resonator is replaced by a reflecting disk. This fact,
as well as examination of T_pler [schlieren] photographs of the shock wave
moving in the jet when the latter impinges on a wall served as a basis for
MCrch's suggestion that generation proceeds by a resonance mechanism.

According to this hypothesis, the appearance of sound is due to oscilla-

tion of the shock wave, the former being produced by disturbances reflected

from the stiff surface. Here the natural frequency of the shock wave-resonator
system is determined by the time it takes for the disturbance to travel from the
shock wave to the wall and back.
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Figure 2. The Length of the First Cell as
a Function of the Nozzle and Bar Diameters.

The above hypothesis has been qualitatively verified by us by visual ob-
servation of the shock wave motion when the jet impinged on the reflecting disk

in bar-type and bar-less systems. In addition, such a generation mechanism

satisfactorily explains the appearance of lower frequency in the radiation than
would follow from the relaxation theory. In fact, ff we regard the distance be-

tween the shock wave and the reflecting wall as a quarter-wave tube with one
stiff and one compliant wall, which is capable of varying its dimensions by

moving away the shock wave from the bottom of the resonator when the counter-
pressure in it increases, then such a scheme of the resonating system, taking

into account radiation from the open end, may make it possible to theoretically
determine the natural frequencies of the radiation.

We have performed an experimental study of the distortion of jet by placing

a reflecting disk and resonator into it. The characteristic curves of static-
pressure distribution along the jet as a function of the distance from the re-

flector are presented in Fig. 3b through f for the case of d n = 13 mm, d b = 6 mm,

disk diameter D= 19 mm and P = 3 atm gage. Figure 3a shows, for comparison,
the pressure distribution of the annular jet without the reflector. The data thus

obtained show that placing a disk in a jet appreciably changes the character of
the latter; here the cell located near the reflector is deformed, i.e., its length
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Figure 3. Pressure Distribution along
a Jet (a Pressure P -- 3 Arm Gage Is

Laid off on the Ordinate).

may be increased appreciably. When
the disk is moved to the end of the

second cell (Fig. 3e) the jet is recon-
structed and the first cell is found to

be almost undistorted (compare the

distributions of Figs. 3a and 3e).

The frequency of vibrations as a
function of the distance from the re-

flector for the case of generation by

placing a disk in the jet is shown in
Fig. 4. Generation of sound is ob-
served up to A -- l +h = 24.8 mm,

with the frequency decreasing mono-

tonically with an increase in A. As
the reflector is moved past this point,

the generation ceases and the signal
received by the microphone is only the

(intrinsic) noise of the jet. Comparison
of the frequency curve with the pres-
sure distributions of Fig. 3 shows that
continuous variation of frequency is

observed as long as the first cell under-

goes forced elongation in the presence
of the reflecting wall. When the second

cell is formed in the jet (between the
nozzle and the reflector), generation
ceases. As will be shown below, in

systems with a resonator it is possible
to have generation even when the shock
wave oscillates in the second cell.

Replacement of the reflecting disk by a resonating cavity also somewhat

changes the pressure distribution in the jet. The absolute pressures at the
bottom of the resonator increase (see Fig. 3f), producing an increase in the

back pressure; here the shock wave moves closer to the nozzle. This increases
the time needed by the disturbances for traveling to the bottom of the resonator
and back and correspondingly decreases the vibratory frequency of the pressure

wave- resonator system. Hence increasing h, the resonator depth, starting as

early as h = 0, reduces the radiation frequency.

The frequency characteristics of gas-jet bar-type radiators were studied
on a unit in which the resonator could be moved by remote control relative to

the nozzle and in which the resonator depth could be varied. A set of replace-

able nozzles, bars and resonators was used for changing the parameters of the
radiator within wide limits. The work was performed in the majority of cases

at air pressures of 3 atm gage. The frequency was determined by means of

wide-band, ball-type piezoelectric pickup, the signal from which was fed to an
AS-3 spectrum analyzer. The range within which the different parameters of

the gas-jet radiator under study were varied is shown in the table.
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Figure 4. The Frequency as a Function of the Dis-
tance From the Reflector.

To illustrate the effect of parameters l and h on the radiation frequency
and on the possibility of generation in the second cell of the jet, Fig. 5 presents

= 12 marl, d = 17 mm and db = 8 ram. As followsgraphs for a radiator with d n r

from the figure, generation on oscillation of the shock wave in the first cell of
the jet is observed for h = 3-13 mm. For h in excess of 13 mm generation starts

already in the second cell, since for A0 = 10 mm (see Fig. 2) and h exceeding

13 mm, the value A = 1 + h exceeds 18 mm, i.e., twice the cell length (the /75

Figure 5. The Acoustic Frequency as a Function of
the Nozzle-Resonator Distance for Different Resona-

tor Depths.
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TABLE

_nl mYn

13
13
13
13
13
12
12
10
9

db) ml_

13

13
13

dr) ITI ITI

15

15

15
15

17

17
17
17
17

Limits of Variatio_

|, ITI1T1 "L. ITI1TI

10 5---14 1--15
t9 5--14.8 0--t5
t9 5--t4.8 t--15
t9 5--t4.81 o--t5
19 5---14.8_ 0--15

119 3--22 ' 8---15
_-- 5-'-24 4--1,
19 4--13 1--1_
19 4--12 1--11,

second cell is by 10-15% shorter than the first). For l exceeding 14 mm (A

17 mm, h <_ 13 mm), generation ceases; the jet is reexcited when I > 19 mm,
i. e., when the shock wave oscillates in the second cell of the jet. Within the

limits of the possible distortion of the cell the frequency variations are suffi-
ciently smooth. Similar frequency curves were obtained by us also for other

values of dn, d b and d r with only this difference that for systems with a large

cell length (dn -- d b is large) and in range of variation of t and h under study

the measurements were performed always in the first generation region (first

cell). It is natural that with an increase in A 0 the boundaries of smooth varia-

tion of the frequency become wider.

The effect of the bar diameter on the acoustic frequency can be illustrated

by graphs (Fig. 6) for aradiatorwithd = 13mm, d = 19mm, P=3 atmgagen r

_.kcps d =8 mrn
_# ,, b

Imm

-Q
5.5 __

q"_ 6 g _0 IZ /4 _
16 18 gO 2Z 24

L, mm

/]imm

Figure 6. Effect of Bar Diam-

eter on the Acoustical Frequency.

and h = 10 mm. It should be noted that

for small l the size of the diameter af-

fects the frequency more than for large
I.

Figure 7 shows the radiation fre-
quency as the nozzle-to-resonator dis-

= d btanee for d n 12 mm and = 7 ram,

with h = 19 and 12 mm. The frequency
curves for different d are identical,

r

which is apparently due to identical

values of parameter A. The frequency
reduction with increasing the resonator
diameter is attributable to the increase

in the volume of air stagnated in the
resonator and to the attendant change in
the back pressure.
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Figure 8 shows the frequency as a function of parameter A; here, unlike
a similar curve presented in [5], this curve shows the effect of the value

= 13 mm, d b= 7 mm andd = 17 ram.of h. This curve is for a resonator with dn r

The most detailed studies which we have performed with a radiator with

d n = 13 mm, made it possible to obtain for the given nozzle diameter a formula

relating the effect of different parameters of the radiator (within the limits

shown in the table) on the radiation frequency. The formula is valid for a ra-
diator operating in the first cell of the jet (taking into account its distortion,

which was pointed out above) with a maximum error of -+] 0%

c

] = 4[h -7 (0.4 -- 0.015h) (d r -- d h ) + 0,/_ l '

where 1, dr, d b and h are in mm, f in cps, and c is the speed of sound at 20 ° C

in mm/sec.

Similar expressions can be obtained also for other nozzle diameters.
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THE SUPERSONIC AIR JET AS A SOURCE OF SOUND

V.M. Mamin and A.V. Rimskiy-Korsakov

ABSTRACT: This article is devoted to the timely problem of
experimental study of the noise of a supersonic air jet.

The discharge of air jets into open space is accompanied by radiation of
high-intensity sound. This phenomenon is characteristic of subsonic as well
as supersonic jets, in the last case this becomes particularly interesting. The
cause of the jet noise is the instability of the tangential velocity discontinuity
i. e., instability of the boundary between the jet and the surrounding medium,
which is demonstrated in amplification of small perturbances formed at the
base of the jet (as these propagate along the jet). This results in the forma-
tion of a boundary layer which develops gradually into a turbulent region which
finally absorbs it.

The noise in a supersonic jet is produced in its subsonic part, as well as
in its supersonic flow body. The noise in the subsonic parts does not differ in
principle from the noise of the subsonic jet which was described in satisfactory
detail by Lighthill E11.

The noise produced by the main supersonic body of the flow is more com-
plex. It may be formed by two mechanisms. These are the feedback mechanism
suggested by Powell [21 for explaining the radiation of a discrete tone by the
jet and a mechanism based on the known fact that ff a disturbance travels at the
interface of two media with a speed greater than the speed of sound in one of
them, then an acoustic wave is radiated into this medium.

Figure 1. Schematic of an Overex-
panded Supersonic Jet and Acoustic

Waves.

The noise of supersonic jets has
been studied by many authors. How-
ever, they describe results obtained
with converging nozzles. The relatively
low velocities which are obtained with
these nozzles do not suffice for discover-

ing some acoustic phenomena which are
related to a developed supersonic main
body of the flow. The selection of a con-
verging nozzle meant that the only kind
of discharge which would be obtained
would be an incompletely expanded jet.

In addition, these authors have studied only a relatively small pressure range
in which radiation of a discrete tone was observed. In performing the experi-
ments described below we have attempted, as far as possible, to eliminate
these shortcomings.

*Numbers in the margin indicate pagination in the foreign text.

/77*

//78

66



#

6

q

0 "2

Figure 2. Schematic of the Jet
Produced under Design Condi-
tion and of the Acoustic Waves.

_,db
t60

]55

15Z

148
xA

o8
.£

I ' I I I

2 _ G 8 I0

arm gage

Figure 3. Intensity of the Discrete
Sound as a Function of the Initial

Pressure (0 db= 2.10 -4 bars).

The measurements were made on an

impulse-type setup. Air was supplied

from a bank of air bottles through a
control valve into a antechamber and

then to the nozzle. Pressures of up to
15 atm gage can be obtained in this chamber. In our experiments we have used
two geometrically similar nozzles: one with throat diameter of 4.5 and outlet

diameter of 6.3 mm; all the dimensions of the second nozzle were half of the
first.

Our studies have verified the fact that phenomena observed in jets dis-

charged from the large and small nozzles are completely similar (the similarity

factor was K = L1/L2, &here L1 and L 2 are the characteristic dimensions of the

large and small nozzles). For this reason all the results presented below were
reduced to the large nozzle.
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The velocity of discharge from the nozzle was 530 m/sec, and the Mach
number was 2.17. Design operating conditions prevailed when the pressure in
the antechamber was approximately 9 atm gage.

We have obtained photographs of the jet and of the acoustic waves and the
spectra of the jet's noise; we have measured the length 1 of the first cell (ram)
and the absolute peak sound level I (db) for different pressures P (atm gage) in
the antechamber and for different positions of the microphone

A (x = 4.5 cm; y = 4.2 or,),

B (z = 2.i cm; y -----3.3 c._),
C (z = -- 0.7 cm; y --- 2.1 c_),
D(x= i4 cm; y = 8cm).

For P = 2 atm gage, a supersonic main body of the flow with a cellular
structure starts forming (Fig. 1). When P= 3 atm gage, a narrow peak, corre-
sponding to the radiation of a discrete tone, appears in the noise spectrum. Its
intensity increases rapidly and at P = 4-5 atm gage it exceeds the noise level
by 25-30 db. As the pressure is increased further, the peak decreases and near
the design operating conditions (approximately P = 8 atm gage) it disappears.
For P = 9-10 atm gage the jet takes on its design shape and loses its cellular
structure (Fig. 2). At P = 11 atm gage shock waves appear again and together
with them a small peak appears in the jetfs noise spectrum. This peak in-
creases slowly as the pressure is raised and reaches 5 db at P = 15 atm gage.
In addition to the fundamental tone, the second, third and fourth harmonics are
[ also_ observed in the noise spectrum.

The radiation of the discrete tone is accompanied by concentrical spherical
waves with a center in the region of the sixth cell. This radiation does not have
a clearly pronounced directivity. The sound levels measured with the micro-
phone in locations A, B and C have a maximum of approximately the same
height for those P for which maximum radiation of the discrete tone is observed
(Fig. 3).

Figure 4 shows the graph of the tone frequency f vs pressure P in the ante-
chamber. It can be seen from the figure that both parts of the graph can be

connected and this almost does not

affect the general shape of the curve,

N_X _db

--/1
_ q # i _ t2 atm gage

Figure 6. Schematic of an Incom-
pletely Expanded Jet and of the

Acoustic Waves.

Figure 7. Intensity of Sound in the
Region of a Directed "Beam" as a

Function of Pressure.
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Figure 8. Comparison of the Speed of

a Disturbance with the Velocity of the
Jet as a Function of the Antechamber

Pressure (the Dashed Line Denotes the
Calculated Speed, the Solid Line Des-

ignates the Speed Found from the

Photograph, v = c/arc cos _).

i. e., the behavior of fIP) does not change suddenly when passing through opera-

tion under design conditions. The curve of the jet's cell length as a function of

P (Fig. 5) behaves similarly. Reducing the dimensions of the nozzle reduces by
the same factor the length of the cell and together with it the wavelength of the
radiated tone. All this shows that a close relation exists between the internal

structure of the jet and the frequency of the discrete tone.

We now consider the radiation of the second type mentioned at the start of
this article. In order for such radiation to exist it is necessary to have a de-

veloped supersonic body of the flow, since otherwise the perturbanee cannot be
amplified to the extent that the radiation would become perceptible. Hence it is

difficult to expect that it would be found at small P. Since the main body of the

jet has a finite length, it should be expected that the radiation will appear on a
photograph in the form of an expanding beam. Radiation of this kind was found

at P>6 atm gage. It emerged from the surface of the jet in the region of the
first cell and had the shape of a beam with an opening angle of approximately
25 ° (Fig. 6). The sound field intensity inside this beam increases with an in-

crease in P to about 13 atm gage and then remains constant (Fig. 7, micro-
phone position D).

According to T. Kh. Sedel'nikov and V.M. Mamin, acoustic waves of this

type should be radiated at an angle to the jet's axis which is

c

_=arccos_ (1)

(c is the speed of sound in the surrounding medium and v is the speed of propa-
gation of the disturbance, which is close to the speed of the jet proper near its

boundary), which can be determined from the photograph. In order to compare
the theoretical and experimental results we have calculated the velocity of the
disturbance from Eq. (1) and the velocity of the jet in the region of the first cell

for the case of isentropic flow. Figure 8 shows these quantities as a function
of P. The shape of both curves is qualitatively the same. Calculations show

that the ratio of the rate of propagation of the disturbance to the velocity of the
jet for the same pressures is approximately 0.82. This is in agreement with

experimental results obtained by Davies and Oldfield E 3] f_ the rate of propa-
gation of eddies in a boundary and agrees with the estimated rate of propagation

of disturbances of different form along the boundary of a jet made by Sedel'nikov
in an article published in the present collection.

The spectrum of this radiation is similar to the noise spectra of the turbu-

lent part of the jet with a superimposed discrete tone, when the latter occurs.
This should have been expected, since the jet here acts as an amplifier of dis-

turbances and converts them into directed radiation, while the noise of the tur-

bulent part of the jet and the discrete tone serve as the disturbance sources.
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All the aforementionedverifies the assumptionby Sedel'nikovandMamin
that radiation of this type exists. A jet beingdischargedfrom a supersonic
nozzle is thus a sourceof acoustic radiation of three types:

a) radiation of the turbulent part of the jet, which takesplace for any
antechamberpressures; b) radiation of a discrete tone, which is characteristic
of moderateantechamberpressure andincompletely expandedjet, and3) ra-
diation producedby rapidly propagatingboundarydisturbances, characteristic
of the designoperating conditionsandincompletely expandedjet, for quite high
antechamberpressures.
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THE FREQUENCYSPECTRUMOF THE NOISEOF A SUPERSONICJET

T. Kh. Sedel'nikov

ABSTRACT: This paper presents a theoretical explanation
of certain features of the noise spectrumof supersonicjets.
It showsthat using linearized equationsof the acousticsof a
moving medium, it is possible to calculate the frequencyof
the maximumof thefrequencyspectrumof the noiseof a hot
supersonicjet.

Statement of the Problem

There exist a number of experimental facts which cannot be coherently ex-

plained by the existing sound-formation theories. Primary among these is the
frequency spectrum of the noise of a jet, which peaks out at Strouhal numbers
of 0.2-0.4 _1].

According to Lighthill's theory [2], the noise of a jet has its origin in the

quadrupole radiation of sound by the jet's turbulence, which is regarded as

given. This leaves open the question of the frequency spectrum of the noise
radiated by it.

The turbulence in the jet is produced by a velocity discontinuity at the inter-

face between the jet and the surrounding gas, which represents as £fa "delta-

shaped" turbulence. Photographs of hot and cold supersonic jets show that, up

to appreciable distance to the nozzle's outlet section this tangential velocity dis-

continuity is quite thin, while the oscillation of the boundary of this layer is

quite small.

We make the following simplifying assumptions: 1) the jet is strictly cy-

lindrical, the angle of its "divergence" is disregarded; 2) the tangential velocity
discontinuity at the boundary of the jet is infinitesimally thin; 3) the jet dis-

charge conforms to its design shape, Lhe presence of "barrels" (cells) in the
jet is disregarded; 4) the amplitude of the oscillations of the jet's boundary is

small, so that the linear approximation is valid; 5) the viscosity of the gas of
the jet and of the surrounding gas is disregarded.

The Dispersion Equation

The assumptions made above make it possible to regard the gas flow as

laminar and to regard the disturbances of this flow as infinitesimal. They are
acoustic in character and obey the wave equations. We introduce the notation:

p - density of the undisturbed medium, c - speed of sound in the latter, v -
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macroscopic velocity of the medium, _ - acoustic potential, 0_- circular fre-

quency, A - Laplacian operator, a - radius of the jet.

The subscript of a quantity will denote the region of the medium to which

it pertains. We use a stationary system of cylindrical coordinates with the z

axis along the jet, with radius vector r and azimuth _,.

The wave equations have the form [ 3]

1 a #s
(i)

Ouantities pertaining to the surrounding gas are denoted by "0" as the

subscript, the subscript of quantities pertaining to the gas of the jet being by
_fl, T!

Only receding waves should exist at infinity, while the acoustic potential
should be finite everywhere. On the boundary of the jet we have equality of

pressures

0 0 0
(2)

and compatibility [ equality] of the displacements of the jet's boundary

(3)

We shall seek the solution of Eq. (1) satisfying the condition at infinity and

the requirement that the potential be finite in the form

_ AH_ ) (x_r), (4)
q_o(r, T, z, t) ] = cos nT.et (_,__,.OX ( BJ. (xlr),q_, (r, T, z, t)f

where A, B and k are constants, H(ln)(X) is an nth order Hankel function of the

first kind, and g is an nth order Bessel function
n

(_- k_'l'--k'. (5)

Using Eqs. (2) and (3) we can eliminate A and B and get an expression re-

lating k and u_
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(co-- kro)2 _oH_ )(×oa) (_ -- kvl) 2 plJn (xla) (6)

which is the so-called dispersion equation. Henceforth we shall for simplicity

drop the superscript of Hankel's function and set v 0 = 0. For long-wave dis-

turbances (× a --_ 0) we find

t n=O.
(7)

It follows from the above expression together with Eq. (7) that long-wave dis-

turbances propagate along the boundary of the jet with the jet's velocity

/85

{_+Fz, n=O

%' qh--exp[ic°(+--t)l ×!exp I-{--_ - V_fz], n:#:O
(8)

with the n = 0 mode increasing (decreasing) linearly, while all the modes n > 0
increase (decrease) exponentially.

Estimating the shape of the frequency spectrum of the jet on low frequencies,
we find

I = 20log _ol=const A- tOnlogloe_St, (9)

where

and it was assumed that

2a] cl
St = (10)

poCo2_ l_C_', (11)

which is valid for the same ratio of specific heats for the gas of the jet and that

of the surrounding medium.

In the opposite case of short-wave disturbances (1× a 1 --, _) we assume that
the roots of Eq. (6) are complex. Then it will take on the form

Po4_ Pl___ (_-U,I= o, _ = _. (12)
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Following l.andau[4], it canbeshownthat this equationwith conditions (11)and

'q'> + Co" (13)

has only real roots. This contradiction leads to the conclusion that on con-

dition (11) for sufficiently high velocities and frequencies, Eq. (6) has only
real roots.

Numerical Solution of the Dispersion Equation

Equation (6) was solved numerically on the Minsk-2 computer by a method
close to the Newton-Rafson method E 5]. For illustration we present the roots

of Eq. (6) for a hot supersonic jet with v0 = 0, Vl/C 1 -- 2.5 and pO/Pl = 9 (Figs.

1, 2 and 3) as a function of the Strouhal number (10).

Physical Analysis of Results

It follows from analyzing the results of the numerical solution that the
rate of increase of the disturbance along the jet for a purely radial mode of vi-

brations (n = 0) is always lower than for axially unsymmetrical modes. For
some Strouhal numbers the rate of increase of the disturbance reaches a max-
imum.

We now express the acoustic pressure away from the jet in terms of _, the
amplitude of vibrations of the jet's boundary

/86

/s_y

T _- uo--H-_i(_a) I'fi exp 1-- Im ×,(r-- a)]. (14)

The graph shows Im ×0 as a function of the Strouhal number of the mode. It is

seen that the main contribution to the far sound field is made by the first mode,
which has the smallest Im×_. It has its maximum for a Strouhal number of

u
0.2-0.3, which is in satisfactory agreement with experimental results [ 1].

In the near sound field a contribution is made also by higher modes, which
correspond to a spectrum with higher frequencies.
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THE DISCRETECOMPONENTOF THE FREQUENCYSPECTRUMOF
THE NOISEOF A FREE SUPERSONICJET

T. Kh. Sedel'nikov

ABSTRACT: This article presents a theoretical explanation of

the discrete component of the frequency spectrum of the noise

of a jet. The instability of pulsations of plane and axisymmetri-
cal jets is analyzed to show the feasibility of predicting the for-

mation of a discrete component in a jet's noise spectrum.

Basic Relationships Governing the Radiation of a Discrete Component of
the Noise Spectrum of a Jet

A feature peculiar to the radiation of sound by cold supersonic jets is the

presence of a discrete component in the frequency spectrum of the noise of
these jets. Experiments show that this component is directly related to the

cellular structure of the supersonic jet, i.e., to the presence of oblique shock
waves [pressure discontinuities] in it. The available theoretical concepts of
the mechanism of formation of this component is primarily due to Powell [1].

The disturbances which move along the jet pass through the shock wave and
thus result in radiation of waves into the surrounding medium. Propagating in
all directions, these waves are diffracted at the edge of the nozzle, which

creates the disturbance in the jet, etc.

Interesting experimental work on the acoustics of transonic jets was done
by Hammitt [2], Davies [3], Merle [4] and others. The quantitative behavior
which is observed can be reduced to the following basic facts:

1. The discrete component of the frequency spectrum of a jet's noise is

directly related to the presence of cells in the jet and when the mode of opera-

tion approaches the design mode it disappears.

2. The discrete component is more pronounced in small-diameter cold jets

and is absent in hot supersonic jets.

3. The frequency of the discrete component decreases with an increase in
velocity and is well described by the formula Eli

/88

! vco

/'_ -- L _ +con, (1)

_Numbers in the margin indicate pagination in the foreign text.
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where L is the length of the cell, v is the velocity at which the disturbance

travels along the jet, c O is the speed of sound in the surrounding air and n is

the number of the harmonic. At transonic speeds several small discontinuities
are observed in the frequency of the discrete component with hysteresis as a
function of the velocity.

/s9

4. The discrete component is radiated near the boundaries of the 3-4th or
5-7th cells (according to different authors).

5. The radiation is practically isotropic, however it was noted that the
first harmonic concentrates along the direction of motion of the jet and along
the opposite direction, while the second harmonic lies at almost a right angle
to the axis of the jet.

6. The radiation is relatively stable for nonround jets, while instability
regions are observed in circular jets at Mach numbers of 1.2-1.5. The plane
jet undergoes flexural vibrations, while the mode of vibration in the round jet
near the instability region changes from radial {beaded) to axially unsymmetrical.

We now examine photographs of the sound field of a cold supersonic jet
emerging from a Lava nozzle under different modes of operation {Figs. 1
through 6). * We note the following types of acoustic waves:

A. All the photographs show practically plane waves, which propagate at
an angle of 30-45°to the axis of the jet.

B. At the modes at which the cells in the jet are clearly expressed, it is
possible to see practically circular waves, receding from the boundaries of
cells.

C. At very low pressures one sees waves emerging at the very discharge
section of the nozzle. These are due to the appearance of an additional discrete
tone in the Laval nozzle at supersonic speeds.

The first type of acoustic waves is attributable to a disturbance which
travels along the boundaries of the jet, increasing in the process; this phenomenon
was examined theoretically in [5]. The second type of waves arises when the
disturbances pass through the pressure discontinuities in the jet. Below an
attempt is made to clarify theoretically some of the quantitative relationships
observed.

The Dispersion Equation of a Plane Jet

We shall attempt to explain the predominantly flexural character of the pul-
sations of the plane jet. We introduce a system of orthogonal coordinates with
the z axis aligned with the direction of the jet; the latter will occupy a space

*These photographs were obtained by Mamin and Podol'skiy,
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--A/2 < x < a/2. Following [5] we write the wave equations for the

acoustic potential cp0 outside the jet and _01 in the jet:

1 (ai (2)

___-- 8 t
I (_-$'-{-Ut_) _,A(pI ,tl

with the boundary conditions at the jet's boundaries

(3) /9O

0 O O a (4)

(_i + vo+ 1=_±¢= o " (5)

Here v 1 and v0 are the velocities of the jet and of the surrounding air, c 1 and

e0 are the corresponding speeds of sound and Pl' P0 are the corresponding

densities.

We break up the disturbances of the jet's boundary into symmetrical and
asymmetrical. For the first the acoustic velocity at x = 0 is zero, while for
the second the acoustic pressure at x = 0 is zero

o_], = O, (sym) (6)

p[,,-0= ql_-o = O. (asym) (7)

Conditions (6) or (7) make it possible to henceforth examine only one of the half
spaces x < 0 or x > 0. We seek the solution of Eqs. (2) and (3) in the form

% (x, y, z, t) = A. exp [i (Ly + kz-- o)t + uoz)], (8)

/cos ulx, (sym)
(z, y, z, t)'= B.exp [i (Ly + kz-- ot)] × tsin u_x, (asym)

(9)
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where 1/L is the period of the disturbance along the y axis, A, B and k are con-

stants, u_is the circular frequency, while ×0 and ×1 are given by the expressions

(v--kvt_* k, L I.
"" = C-;i-, ] - (lO)

Equation (8) for Re ×0 > 0 corresponds to the case of receding waves. Elim-

inating A and B by means of Eqs. (4) and (5), we get the dispersion equation of

a plane jet

_o _: r_a O, (sym)i po(_ -- kvo)2 + pl (_-- kvl) 2 tan-_- = (11)

ipo(c_--kro)"--p,(_--_)_ cot T ----O. (asym) (12)

In the case of low frequencies for the branch k -_ 0 we have /91

kVl_ 2
-t-tanh_2_ = O, (sym) (13)

Pl kvl'_ 2 +¢om--_- = O, (asym) (14)

and at high frequencies and with Im k J= 0, we have

x, (both cases)po((o--k_o) _ -}- P1(_--kvl)2=0" (15)

From Eqs. (13) and (14) we find for v 0 << v 1

kvl /--------
--_ t -Fi ]/ go[ (16)

-- ¥pl '

Impulse photographs of the sound field of a cold supersonic jet at pressures of
1, 3, 6, 8, 11 and 14 atm gage in the antechamber (Figs. 1 through 6).
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Figure 1.
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Figure 2.

81



/ 90c

Figure 3.
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Figure 4.
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Figure 5.
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Figure 6.
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where

r

ta_ ___aa,(sym)

coth La. (asym)

(17)

It can be seen that for all the L A the imaginary part of the increment (Im k) for
symmetrical disturbances is smaller than for asymmetrical disturbances. It
can be concluded from this that the principal mode of disturbances is the flex-
ural mode (paragraph 6).

The Dispersion Equation of a Circular Jet

We shall analyze the circular supersonic jet by the dispersion equation
from [ 5]

/91

H_)'(_) x, J:,(x,=)

po((o-- kVo)_H_) (xoa)= p, (o_-- kv,)_J,_(x-7_" (18)

Here H(ln)(X) is an n-order, first kind Hankel's function, J (x) is an n-order

Bessel function, a is the radius of the jet and n is the number of the mode.
This equation for cold air jets was solved numerically on the Minsk-2 electronic
computer by the Newton-Rafson method [ 6] as a function of the Mach number
(parameter) and the Strouhal number (independent variable). The remaining
quantities used in the calculations were expressed in terms of the Maeh number
using ordinary gasdynamie formulas; it was assumed that the gas surrounding
the jet is at rest. The graphs of Figs. 7, 8, 9, and 10 show the imaginary and
real parts of the roots of Eq. (18) corresponding to increasing disturbances.

It is possible to calculate the Strouhal number corresponding to the fre-
quency of the discrete component if we assume that the rate at which the dis-
turbance propagates along the jet is expressed as

_)1

v ----_--'-7_" (19)
ae(T)

The Strouhal numbers thus obtained are tabulated below

M 1.2 1.6 2.0 2.4
St.. 0.48 0.20 0.12 0. 085

U

It can be seen that (by virtue of viscosity, etc. ) the mode with n = 0 (bead-
like pulsations) should predominate at M < 1.2, while modes with n > 0, i. e.,
azimuthal-unsymmetrical modes (paragraph 6) should predominate at M > 1.6.

/ 93
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Estimate of the Radiation of Waves by Disturbances Passing Through
0b.l.ique Pressure Discontinuities [Shocl_ Waves j

The passing of an acoustic-type disturbance through an oblique shock wave
was examined in great detail by Kontorovich [7], In the case of a jet the prob-
lem is more complex since, firstly, after passing the shock wave the distur-
bance has to pass through a rarefaction wave and secondly, only a part of the
disturbance, which moves inside the jet is attenuated.

We shall estimate the part of the disturbance energy which is radiated as
the disturbance passes through the shock and then through the rarefaction wave
using the expression

"a-_ " E_ (r ,( a) -- E_. (r < a) E (r >a) (20)
E_(r _-a) E

Here E is the total acoustic energy of the down-stream disturbance, E (r < a)

and E+ (r > a) are parts of this energy which are contained in the jet and out-

side it, the subscripts minus and plus pertaining to the disturbance before and
after passing the boundaries of the cell (Fig. lla). It was assumed in writing
Eq. (20) that, due to the reduction in the force of the disturbance inside the jet
on passing through the shock wave, the force of the disturbance outside the jet
is no longer that of equilibrium and a part of the acoustic energy is radiated.
In other words, it can be imagined that the energy flux through the surface of
the jet has a step in it (Fig. llb). / 94

Energy,
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Figure 11. Acoustic Energy Density
of the Acoustic Field of a Jet (a).
Acoustic Energy Flux Through the

Jet's Boundary (b).
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Figure 12. The Ratio of the Acoustic
Energy of the Jet to the Acoustic En-
ergy Outside the Jet as a Function of

the Strouhal Number.
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Estimating the acoustic energy on the basis of known formulas, we find

E(r<a) PoCA ^

E(r > _)-- p,_ "'_'
(21)

where

- n--LL+
A = ×_ a_

n' [ It_'" (xoa) ]" (22)

The graph of Fig. 12 shows (St) for a cold air jet with M = 2.4 and for a hot jet

pl)/pl 2 2 for the most provable mode of radia-with M = 2.5, = andP0 c =PlC 1

tion, i.e., n = 1. It can be seen that the expression

"E(r<o)[-,E(r>a) t _- (23)
E = E (r >---_ I

/94

yields a much higher value for the cold than for the hot jet.

The first factor of Eq. (20) is determined solely by the processes inside the

jet and does not depend on the ambient air temperature. It appears that by an-
alyzing it it will be possible to determine the manner in which the intensity of
the discrete component of the frequency spectrum of the noise depends on the

mode of discharge.
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THE DISPERSIONEQUATIONOF A PLANE EJECTOR

L.I. NazarovaandT. Kh. Sedel'nikov

ABSTRACT: This article presents a theoretical studyof the
stability of the boundariesof a planesupersonicjet in a
planeejector. It also gives a theoretical explanationof some
features of the noise spectrumof a jet dischargedfrom a
nozzle in the presenceof anejector.

Experimental Data on the Noise of Ejectors

Work performed by a number of authors shows that noise formation in

ejectors has its specific features. The most characteristic feature is the
complex frequency spectrum of the noise, consisting of relatively sharp
peaks on the smooth part of the spectrum [ 17. A second feature is the de-

pendence of the intensity of these discrete components on the distance between
the outlet section of the nozzle and the outlet section of the ejector, i.e., on

the length of the jet which is located in the ejector. The third feature of noise
formation in an ejector consists in the presence of two types of discrete fre-

quencies in the noise, one of which decreases its frequency with an increase
in the ratio of the ejector radius to the jet radius, while the other does not

change its frequency, but nonmonotonically changes its intensity. This second
group disappears when the jet loses its cellular [ beadlike7 structure. No ex-

planations are available for the above features of noise formation in ejectors.

The Dispersion Equation of a Plane Ejector

We shall now derive the dispersion equation for a plane ejector. This will
be done similarly to the derivation of Eq. (11) of [2]. Only here the radiation

conditions are replaced by the impedance conditions at the ejector's wall (Fig.
1). For a wide frequency range the ejector can be regarded as acoustically
stiff

/95*

a_* I' = 0. (1)

The condition that the potential on the axis of the jet is finite, which is needed

for cylindrical jets, is here useless. Following the derivation of Eqs. (11) and
(12) in [2], we break up the disturbances of the boundary into symmetrical and

asymmetrical. In symmetrical fluctuations the acoustic velocity in the middle
plane of the jet is zero

/96
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ax _.o=0, (sym) (2)

while in asymmetrical fluctuations the pressure in this plane is zero

.o= 0. (asym)

We shall seek the solutions of wave equations

(3)

_(a a),
c i

(4)

in the form

"Pi (x, y, z, t) = exp (iLy) .exp [i (kz -- cot)]. (Di (x). (5)

For _P. we get
1

¢((x) + =_,_)i (z) = u, (6)

where

(_) -- kvi_a __ k 2__ L a
• _ = \ _, / (7)

Here L is the periodicity of the disturbance along the y axis.

For _0 we can immediately write the expression

(I)0 (x) =A cos ×o (b -- x), (8)

which satisfies Eq. (1).

For q51 we get two expressions

q)l (z) = B x /{cos
Xl x (sym)

(sin ulx (asym)
(9)
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Plane Ejector.

Using conditions at the boundary of the jet /97

0 a
(10)

(11)

we can eliminate constants A and B and obtain the dispersion equations

Xotanuol =-- P--Z°(o--kvo)'pl ¢o_kvl XltanXla, (sym) (12)

Po /o--kv0\s

_tanU0 l = _ / _---_-_1 ) ul cot ula, (asym) (13)

where I =b--a.

We introduce the notation

_= _ ,_=_,_= c, = - ,_=
v_ '_ vl / M_

(14)

and write Eqs. (12) and (13) in the form

(t -- _)* = -- -° (t -- 5 • _i)2 XtanZ
pl YtanY '

(15)

n_ ipo (i--5 • _)2ta "YtanY '(i -- ¢)_ = (16)
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turbance.

where

x = _ V(_ -- _), -- 1__,
Cl

Y = <°! 1/(1 -- 8. _,)_-- t_'E,2.
CO

(L = 0),

IL = O) (17)

We first examine Eq. (15), restricting ourselves to the case of hot super-
sonic jets. If we seek roots with a moderate absolute magnitude, i.e.,

I B I-_ t, (18)

then in the limit of low frequencies we will have

-ff ---TV,_Y.
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Equation (15) will take on the form

Po%{ a
(19)

whence we get

(20)

It can be seen that for some t real roots will become complex roots.

It is convenient to continue the examination of Eq. (15) by setting X, Y,
1 -- _ and (1 -- 6_) equal to zero one after the other. The real roots can be
found by setting _ = const and solving the equation thus obtained for St. The
complex roots can be found from the iteration formula

/9__s

V-_[ XtanX ]'/'_r,A = I -4-i (| --_'_)' YtanY 15--_,t" (21)

A formula analogous to Eq. (20) can also be found from Eq. (16)

_1+ VPd ! (22)-- p,a t tan t '

but the limits of its applicability are somewhat narrower.

As an illustration we have examined a hot supersonic jet with parameters

M 1 = 2.5, 8 = 0.02, po/p 1 = 9, a/b= 1/3 and L= 0.

We reduce the graphs (Figs. 2 and 3) of roots _ of Eqs. (12) and (13) for
low Strouhal numbers

St = 2aI t_. (23)
v{ Co

/99

Since these roots are complex conjugates [ of one another] only one each of the
two conjugate roots were reduced.

Let us now examine the physical meaning of the results so far, by con-
sidering a finite plane ejector. Acoustic self-excitation in such an ejector may
occur as follows. The disturbances which arise at the outlet section of the

nozzle propagate along the jet and increase [ in intensity]. Passing through the
inlet section of the ejector this disturbance produces a reverse wave inside the
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ejector dueto the radical changein the boundaryconditions. Thereverse wave
is then redecomposed[ rearranged] at the outlet section of the nozzle, thus
producinga disturbance.

In order for sucha mechanismto exist, the phaseandamplitude conditions
must be satisfied. Dueto the inevitable losses on rearrangement, dueto vis-
cosity, etc., it is required that the increase in the disturbancewhenmoving
downthe jet exceedthe reduction in the disturbanceonmovingupstream of the
jet. This conditionis called the amplitude condition

AIm _= [ Im _[Re_>o--IIm _lR_¢<o>0. (24)

It can be seen from examination of the graphs that for given parameters of

the jet and ejector stable self-excitation of the ejector is possible for Strouhal
numbers

SL _ 0.087
0,077 :> St _ 0.03

St_>O.t2

(sym. case)

(asym. case)

In the first case the maximum of AIm_ is reached for St > 0.98, and in the
second case it corresponds to St = 0.44 and St > 0. 156.

We now turn to the phase conditions. If the phase losses 25 on reflection

of the disturbance from the ejector inlet and nozzle outlet sections are known,

then T, the time of one cycle, can be written in the form

26 L_+L , (25)

where V and V are the phase velocities of the disturbances traveling down
--_ 4-

and upstream of the jet. Using Eq° (19) of [3], we can write the phase con-
dition in the form

L t ct
(26)

Stable self-excitation of an ejector is thus possible not at all lengths L,

but only for discrete L.

Returning to the amplitude condition, we write the amplification factor of

the cycle as

]¢ cyc _ ]¢ref. "etx, (27)

/100
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where kref is the product of the absolutevaluesof the disturbance reflection
factors from the respective nozzleandejector sections, while /_ is expressed
by

(28)

Using Eq. (26), we find

__ 2.x[ Im_ [--[ Im _,...[
I Re _.. I -k 1Re F.._I

Thus, the considerations presented above make it possible to find regions of
Strouhal numbers which are most probable from the point of view of self-induced

vibrations, as well as to understand the discrete character of the frequency
spectrum of ejector noise.

It should be added that above we have considered a jet at its design dis-
charge mode, i.e., in the absence of the fine structure. In the case of "cells"

or "barrels" disturbances may be reflected also from the ends of these and

this produces additional self-excitation frequencies. All the expressions ob-

tained above remain valid, except that then L will denote the length of the
"barrel" or "cell. "
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THE DISPERSION EQUATIONS FOR MULTILAYER JETS AND FOR
SEVERAL JETS

T. Kh. Sedel'nikov

ABSTRACT: Of great interest at present is the determination
of the frequency spectrum of the noise of an annular jet, several
jets, etc. The present article derives dispersion equations for

determining the stability of the boundaries of multilayer jets
and of several jets.

The Dispersion Equation of an Annular Jet

Let us consider a twin-layer cylindrical infinite supersonic jet. As in
1], we shall disregard the angle of divergence of the jet, its cellular structure,

viscosity of the gas in the jet, and we shall regard the amplitude of vibrations
of the jet's boundary as infinitesimal. The selected coordinate system is seen

clearly in Fig. 1. The variables pertaining to the gas surrounding the jet are
denoted by the subscript "0, " subscript "1" is assigned to the gas of the inner
jet, while subscript "2" designates the gas of the outer [annular] jet. We use

the following notation: p - density of the undisturbed gas, c - speed of sound in
it, v - velocity of the undisturbed gas, 0_- circular frequency, A - Laplaeian
operator, _o- acoustic potential, t - time.

We now write the wave equations and the boundary conditions [ 17

i 0 0 _
= z:-.} _i, (1)

/101"

(2) / 102

_-_nIs = (_} + vi _/_-n Is, (3)

where S are the bounding surfaces, while n are the normals to them, i, j = 0,
1,2.

We shall seek the solution of Eqs. (1) in the form

*Numbers in the margin indicate pagination in the foreign text.
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Figure 1. Schematic and Designations
for a Twin-Layer Jet.

/10__2_1

C_o(r, T, z, t) ] I AH_) (xor),

_1 (r, 7, -', t) J = cosnT.ex p [i (kz- o)t)] x _DI_ (x,r),q_(r, T, _, t) [BI, (x,r) + CNn (x,r),

(4)

where the so-called radiation condition is already satisfied, while ×i is given

by the expression

/ 102

(5)

and A, B, C, D and k are constants.

Eliminating A, B, C and D by means of conditions (2) and (3) for r = a and

r = R, we get the so-called dispersion equation relating k and ¢0

s • j, LT. ' / O)--M,, (x..a_,x2R) -- ,,a.×_a_,×,,n,_p--_TL.,,,--k,,, . ______ "t-

4(,,..) ( ...- ).-;,(,,.,,)
p_uo o-- kv_ ,H'_ (xoR)

--'M. (.,a,, ,,,n)--_( _ k_.) ..(_----3= o,

where the notation is

(6)

21f. (x, y) ----]. (x) H_ ) (y) -- J. (.u)//(7 ) (z) (7)

and the primes to the left or right of M denote differentiation with respect to the
first or second argument [ respectively]. When a = R or a = 0, Eq. (6) becomes

the dispersion equation for a simple jet.

In the limiting case of long-wave disturbances Eq. (6) simplifies to

,+ (,,-,,o.).(o,,..).
p, [o--kv,_l] (8)
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Of particular interest is the easeof anannular jet with v0 = Vl, P0 = Pl

and c O = c 1. In this case Eq. (8) has the solution /103

where

V_k vo-t- P_Tv_-bl _T(oo--vj)Po rpo
-- = , (9)

2 + _ T_
v° po

tnx[Rnq-a__] _ t n=/=0. (10)
TI=_ .itch-- , T2=_,

For n = 0 Eq. (6) for long-wave disturbances has the form

where kv2/_¢= 1. In the opposite case of short-wave disturbances for complex

k we get the expression

(12)

which corresponds to separate propagation of disturbances along each of the
boundaries.

It is possible to obtain dispersion equations also for multilayer jets. We

present here the dispersion equation for a triple-layer jet 0 < a < b < R<

_2 XzMn(u_b,a2a) _ _.'M n (a_b,a2a) --___

02 ((o -- kv2) _ a,_M n (a_b,a2a) -- _.M n (a2b,ala)

x8 x;M n (a_,asR) -- p.'Mn(usb,_R)

ps (¢o -- kvs)" ×sM" n (×sb ,unR) -- Ix Mn (xsb,:_R) "
(13)

Here subscript "3" denotes the outer annular jet b < r < R and the notation used
is

xop__2 [o -- kv8 _ *H_ (mlt)
= '

(14)
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Dispersion Equations for Several Jets

We shall now obtain the dispersion equation for an infinite cylindrical jet,

situated near a flat, acoustically stiff wall which is parallel to the jet's axis,

or for two identical parallel jets. Disregarding the interaction between the gas
flows in the jets, we shall assume that the jets are in the shape of circular

cylinders. Without writing out in detail the wave equations for the acoustic
potentials, we immediately write the acoustic potential outside of the jet

/104

q)_(r, T, =, t) = exp [i (kz -- t00] ×

_, _ .4,, [tt_ L_(× ,r,) exp (in T1) • H_ _ (x_r2) exp (in_'2)].
tl

(15)

It is easy to see in Fig. 2, that the plus (minus) sign corresponds to the
case of symmetrical (asymmetrical) modes of vibrations, with the stiff screen

corresponding to the first case° The acoustic potential inside the left jet can
be taken in the form

_Pl (r, 7, z, t) = exp li (kz -- cot)] _C_],n(xlr,)exp (intTz). (16)

Using the "addition theorem" for Hankel's functions, it is possible to write

Eq. (15) in the coordinate system related to the left jet

T, (rz, T,, z, t) = exp [i (kz -- ot)] _,_ lexp (in_',)] A_,I (r,),
n I

(17)

where

(u r (I_H,__(ma),_ni (r) = 5,_tHr, (×,) ± Jn (×0r) (18)

while 5n/is Kronecker's delta ('Sn/= 0 if n t l and 5nl = 1 if n = 1). Eliminating

constants C by means of boundary conditions at r = a, it is possible to obtain
m

a system of homogeneous equations for constants A l

_,A,, _',(a)--z'P------E°(-g--kv 'zoP, Jn_,a) [t_z (a)J =0" (19)

Equating its determinant to zero, we shall find the sought dispersion equation

I_., ± r.Ht'+_. (x0a) I = 0, (20)
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Figure 2. Systems of Cylindrical Co-
ordinates for Two Jets.

/ 104

Figure 3. System of Cylindrical Coordinates for a Jet Be-
tween Walls.

/105

J I 0//ii' ! ' ' 1
i I_ / • I I t I

i I I I If l-q-J, , ,
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Figure 4. System of Cylindrical
Coordinates for a Jet in a Rec-

tangular Duct.
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where

FT1

J_ (ZOO)- h,d,, (ma)

H T" (zoo) - _,u_)) (x**) "
(21)

x,_ (_- k,.o]' J; (x,,).
A,_ = _ _/ "7. (x,a)

(22) /106

Similar dispersion equations can be obtained for a jet between two acousti-

cally stiff walls parallel to one another and to the axis of the jet (Fig. 3). Equa-

tion (20)remains valid, but quantity Hl(l+)n (_0,A is replaced by the expression

where summation in the first sum is over all the jets with "positively directed

rotation of disturbances" and in the second sum it is over all the jets with "neg-

atively directed disturbances."

A jet in a rectangular duct or a jet situated symmetrically in a duct in the
form of a regular hexagon or triangle is considered identically, except that

Eq. (23) is then replaced by the expression

Mh, = '_ lexp li (l + n)Td}H,T,_(xoA,n)+

+ _, ( __ )n {exp I -- i (l + n) Tql}Ht _).(Xoaq,).
q

The notation is clear from Fig. 4.

(24)
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